scholarly journals Carbon Stocks of Fine Woody Debris in Coppice Oak Forests at Different Development Stages

Forests ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 199
Author(s):  
◽  
◽  
◽  

2015 ◽  
Vol 63 (2) ◽  
pp. 247-259 ◽  
Author(s):  
Maša Zorana Ostrogović ◽  
Hrvoje Marjanović ◽  
Ivan Balenović ◽  
Krunoslav Sever ◽  
Anamarija Jazbec


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 881
Author(s):  
Nathalie Korboulewsky ◽  
Isabelle Bilger ◽  
Abdelwahab Bessaad

Volume or biomass estimates of downed woody debris are crucial for numerous applications such as forest carbon stock assessment, biodiversity assessments, and more recently for environmental evaluations of biofuel harvesting practices. Both fixed-area sampling (FAS) and line-intersect sampling (LIS) are used in forest inventories and ecological studies because they are unbiased and accurate methods. Nevertheless, most studies and inventories take into account only coarse woody debris (CWD, >10 cm in diameter), although fine woody debris (FWD) can account for a large part of the total downed biomass. We compared the LIS and FAS methods for FWD volume or biomass estimates and evaluated the influence of diameter and wood density measurements, plot number and size. We used a Test Zone (a defined surface area where a complete inventory was carried out, in addition to FAS and LIS), a Pilot Stand (a forest stand where both LIS and FAS methods were applied) and results from 10 field inventories in deciduous temperate forest stands with various conditions and amounts of FWD. Both methods, FAS and LIS, provided accurate (in trueness and precision) volume estimates, but LIS proved to be the more efficient. Diameter measurement was the main source of error: using the mean diameter, even by diameter class, led to an error for volume estimates of around 35%. On the contrary, wood density measurements can be simplified without much influence on the accuracy of biomass estimates (use of mean density by diameter class). We show that the length and number of transects greatly influences the estimates, and that it is better to apply more, shorter transects than fewer, longer ones. Finally, we determined the optimal methodology and propose a simplification of some measurements to obtain the best time-precision trade-off for FWD inventories at the stand level.



2009 ◽  
Vol 63 (3) ◽  
pp. 239-263 ◽  
Author(s):  
Michael L. Ferro ◽  
Matthew L. Gimmel ◽  
Kyle E. Harms ◽  
Christopher E. Carlton


Author(s):  
A. Safari ◽  
H. Sohrabi

The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics were able to explain about half of the variation in aboveground carbon stocks. These results demonstrated that Landsat 8 derived texture metrics can be applied for mapping aboveground carbon stocks of coppice Oak Forests in large areas.



Author(s):  
Joseph M. Culp ◽  
Garry J. Scrimgeour ◽  
Greg D. Townsend


2015 ◽  
Vol 63 (2) ◽  
pp. 115 ◽  
Author(s):  
Danswell Starrs ◽  
Brendan C. Ebner ◽  
Christopher J. Fulton

Transport and processing of allochthonous material is crucial for trophic pathways in headwater streams. Freshwater crayfish are known to affect and exploit the break-down of in-stream terrestrial plant material into detritus. We recorded Euastacus armatus (Murray River crayfish) individuals feeding on discrete patches of allochthonous material within an unregulated section of the Goodradigbee River, an upland stream in temperate Australia. Despite suggestions of aggressive territoriality, E. armatus were observed by remote and manual underwater filming to feed in non-aggressive aggregations on these piles of fine woody debris and leaf litter. On the basis of observations of 25 individuals found in the vicinity of the allochthonous patches, this population comprised mostly female individuals at smaller sizes of maturity than has been recorded for lowland populations of E. armatus. Our study confirms the importance of concentrated allochthonous food patches for detritivores, and points to the important trophic linkage between terrestrial and aquatic ecosystems via a widespread and iconic freshwater invertebrate. Moreover, these non-aggressive feeding aggregations of E. armatus challenge notions of aggression in this species that have been developed in small-scale aquarium studies.



2006 ◽  
Vol 15 (4) ◽  
pp. 479 ◽  
Author(s):  
John B. Graham ◽  
Brian C. McCarthy

Silvicultural treatments alter fuel dynamics in forested systems, which may alter fire regime. Effects of thinning and prescribed fire on forest-floor fuels were studied in mixed-oak forests of south-eastern Ohio to examine fuel dynamics over time. Fuel characteristics were measured before, immediately after, and 3 years following fire and thinning treatments along 20-m transects (n = 432) following Brown’s planar intersect method. Measurements were taken to determine litter, duff, 1-h, 10-h, 100-h, and 1000-h sound (1000S) or rotten (1000R) fuel mass. Coarse woody debris (CWD) was sampled on 432 additional 80-m2 belt-transects. Repeated-measures analysis of variance with post-hoc Bonferonni comparisons was used to analyse the change in the fuels over time. The specific effects of silvicultural treatments varied over time with changes in larger, sound fuels (1000S and CWD) persisting longer than changes to finer (litter, duff, 1-h, 10-h, and 100-h) or less-sound (1000R) fuels, which appear to be more transient. Unlike in western North America where fuels accumulate over time, decomposition and productivity appear comparable in eastern mixed-oak forests. Aside from their impact on decomposition or productivity rates, silvicultural treatments appear to have little impact on fine-fuel loading in these systems.



Sign in / Sign up

Export Citation Format

Share Document