scholarly journals Joint Optimal Power Allocation and Relay Selection Scheme in Energy Harvesting Two-Way Relaying Network

2019 ◽  
Vol 11 (2) ◽  
pp. 47 ◽  
Author(s):  
Xin Song ◽  
Siyang Xu ◽  
Zhigang Xie ◽  
Xiuwei Han

In this paper, we propose a joint power allocation, time switching (TS) factor and relay selection scheme for an energy harvesting two-way relaying communication network (TWRN), where two transceivers exchange information with the help of a wireless-powered relay. By exploiting the TS architecture at the relay node, the relay node needs to use additional time slots for energy transmission, reducing the transmission rate. Thus, we propose a joint resource allocation algorithm to maximize the max-min bidirectional instantaneous information rate. To solve the original non-convex optimization problem, the objective function is decomposed into three sub-problems and solved sequentially. The closed-form solution of the transmit power of two sources and the optimal TS factor can be obtained by the information rate balancing technology and the proposed time allocation scheme, respectively. At last, the optimal relay node can be obtained. Simulation results show that the performance of the proposed algorithm is better than the traditional schemes and power-splitting (PS) scheme.

2013 ◽  
Vol 791-793 ◽  
pp. 1153-1159
Author(s):  
Li Ping Su ◽  
Dong Chen ◽  
Wei Hua Huang ◽  
Ning Li

This paper investigates the joint power allocation (PA) and relay selection scheme (RS) in two-way relaying cognitive radio networks consisting of multiple user-pairs and multiple relays. In order to reduce the computational complexity for practical scenario, we propose a branch and bound based (BnB-based) power allocation and relay selection scheme and a greedy power allocation and relay selection scheme to maximize the system throughput. The system is assumed under the constraint that the interference power from the secondary nodes in two way relay systems to primary user (PU) shall be less than a predefined interference threshold which can guarantee the normal communication of PU. Numerical simulation results show that the optimal PA and RS scheme has the highest system capacity, however, the greedy PA and RS scheme has the lowest complexity. The proposed BnB-based PA and RS scheme has the better tradeoff of system throughput and complexity than the above two schemes.


2013 ◽  
Vol 2 (2) ◽  
pp. 239-242 ◽  
Author(s):  
Imtiaz Ahmed ◽  
Aissa Ikhlef ◽  
Robert Schober ◽  
Ranjan K. Mallik

Sign in / Sign up

Export Citation Format

Share Document