scholarly journals A Next-Generation Core Network Architecture for Mobile Networks

2019 ◽  
Vol 11 (7) ◽  
pp. 152 ◽  
Author(s):  
Andrea G. Forte ◽  
Wei Wang ◽  
Luca Veltri ◽  
Gianluigi Ferrari

Over the years, the cellular mobile network has evolved from a wireless plain telephone system to a very complex system providing telephone service, Internet connectivity and many interworking capabilities with other networks. Its air interface performance has increased drastically over time, leading to high throughput and low latency. Changes to the core network, however, have been slow and incremental, with increased complexity worsened by the necessity of backwards-compatibility with older-generation systems such as the Global System for Mobile communication (GSM). In this paper, a new virtualized Peer-to-Peer (P2P) core network architecture is presented. The key idea of our approach is that each user is assigned a private virtualized copy of the whole core network. This enables a higher degree of security and novel services that are not possible in today’s architecture. We describe the new architecture, focusing on its main elements, IP addressing, message flows, mobility management, and scalability. Furthermore, we will show some significant advantages this new architecture introduces. Finally, we investigate the performance of our architecture by analyzing voice-call traffic available in a database of a large U.S. cellular network provider.

2018 ◽  
Author(s):  
Phanidra Palagummi ◽  
Vedant Somani ◽  
Krishna M. Sivalingam ◽  
Balaji Venkat

Networking connectivity is increasingly based on wireless network technologies, especially in developing nations where the wired network infrastructure is not accessible to a large segment of the population. Wireless data network technologies based on 2G and 3G are quite common globally; 4G-based deployments are on the rise during the past few years. At the same time, the increasing high-bandwidth and low-latency requirements of mobile applications has propelled the Third Generation Partnership Project (3GPP) standards organization to develop standards for the next generation of mobile networks, based on recent advances in wireless communication technologies. This standard is called the Fifth Generation (5G) wireless network standard. This paper presents a high-level overview of the important architectural components, of the advanced communication technologies, of the advanced networking technologies such as Network Function Virtualization and other important aspects that are part of the 5G network standards. The paper also describes some of the common future generation applications that require low-latency and high-bandwidth communications.


2006 ◽  
Vol 29 (17) ◽  
pp. 3633-3646 ◽  
Author(s):  
Pubudu N. Pathirana ◽  
Andrey V. Savkin ◽  
Nirupama Bulusu ◽  
Tony Plunkett

2000 ◽  
Vol 14 (1) ◽  
pp. 81-99 ◽  
Author(s):  
Stefan Verwijmeren ◽  
Michel Mandjes ◽  
Richard J. Boucherie

This paper investigates blocking probabilities obtained from multidimensional truncated Poisson distributions. For blocking probabilities typically arising in layered cellular mobile communications networks, the large deviations results of Gazdzicki et al. [9] are extended to state spaces determined by multiple constraints. The results yield asymptotically exact expressions that provide an accurate approximation of probabilities up to 1%, which considerably extends the applicability of large deviations results and enables efficient approximation of blocking probabilities for realistic mobile communications networks.


2021 ◽  
Author(s):  
Abdelfatteh Haidine ◽  
Fatima Zahra Salmam ◽  
Abdelhak Aqqal ◽  
Aziz Dahbi

The deployment of 4G/LTE (Long Term Evolution) mobile network has solved the major challenge of high capacities, to build real broadband mobile Internet. This was possible mainly through very strong physical layer and flexible network architecture. However, the bandwidth hungry services have been developed in unprecedented way, such as virtual reality (VR), augmented reality (AR), etc. Furthermore, mobile networks are facing other new services with extremely demand of higher reliability and almost zero-latency performance, like vehicle communications or Internet-of-Vehicles (IoV). Using new radio interface based on massive MIMO, 5G has overcame some of these challenges. In addition, the adoption of software defend networks (SDN) and network function virtualization (NFV) has added a higher degree of flexibility allowing the operators to support very demanding services from different vertical markets. However, network operators are forced to consider a higher level of intelligence in their networks, in order to deeply and accurately learn the operating environment and users behaviors and needs. It is also important to forecast their evolution to build a pro-actively and efficiently (self-) updatable network. In this chapter, we describe the role of artificial intelligence and machine learning in 5G and beyond, to build cost-effective and adaptable performing next generation mobile network. Some practical use cases of AI/ML in network life cycle are discussed.


2009 ◽  
Vol 12 (5) ◽  
pp. 113-121
Author(s):  
Tri Huu Do ◽  
Loi Duy Vu ◽  
Dao Manh Ha

In this paper, we propose two reformation of channel frequency allocation in Dynamic Load Balancing Strategy for Channel Assignment Using Selective Borrowing in Cellular Mobile Environment (LBSB) [2]. First, a proposal to classify cellular in three difference classes, then we determine the co-channel cell which have to lock channel frequency, the number of co-channel cell have to lock. Exprimentaions have showed the proposal methob has lower blocking probability with LBSB.


2010 ◽  
pp. 1066-1083
Author(s):  
Wei Shen ◽  
Qing-An Zeng

Integrated heterogeneous wireless and mobile network (IHWMN) is introduced by combing different types of wireless and mobile networks (WMNs) in order to provide more comprehensive service such as high bandwidth with wide coverage. In an IHWMN, a mobile terminal equipped with multiple network interfaces can connect to any available network, even multiple networks at the same time. The terminal also can change its connection from one network to other networks while still keeping its communication alive. Although IHWMN is very promising and a strong candidate for future WMNs, it brings a lot of issues because different types of networks or systems need to be integrated to provide seamless service to mobile users. In this chapter, the authors focus on some major issues in IHWMN. Several noel network selection strategies and resource management schemes are also introduced for IHWMN to provide better resource allocation for this new network architecture.


Author(s):  
Wei Shen ◽  
Qing-An Zeng

Integrated heterogeneous wireless and mobile network (IHWMN) is introduced by combing different types of wireless and mobile networks (WMNs) in order to provide more comprehensive service such as high bandwidth with wide coverage. In an IHWMN, a mobile terminal equipped with multiple network interfaces can connect to any available network, even multiple networks at the same time. The terminal also can change its connection from one network to other networks while still keeping its communication alive. Although IHWMN is very promising and a strong candidate for future WMNs, it brings a lot of issues because different types of networks or systems need to be integrated to provide seamless service to mobile users. In this chapter, the authors focus on some major issues in IHWMN. Several noel network selection strategies and resource management schemes are also introduced for IHWMN to provide better resource allocation for this new network architecture.


Sign in / Sign up

Export Citation Format

Share Document