scholarly journals Special Issue “New Perspectives in Intelligent Transportation Systems and Mobile Communications towards a Smart Cities Context”

2019 ◽  
Vol 11 (11) ◽  
pp. 228 ◽  
Author(s):  
Giovanni Pau ◽  
Alessandro Severino ◽  
Antonino Canale

Intelligent transportation solutions and smart information and communication technologies will be the core of future smart cities. For this purpose, these topics have captivated noteworthy interest in the investigation and construction of cleverer communication protocols or the application of artificial intelligence in the connection of in-vehicle devices by wireless networks, and in in-vehicle services for autonomous driving using high-precision positioning and sensing systems. This special issue has focused on the collection of high-quality papers aimed at solving open technical problems and challenges typical of mobile communications for Intelligent Transportation Systems.

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1383
Author(s):  
Beimar Rojas ◽  
Cristhian Bolaños ◽  
Ricardo Salazar-Cabrera ◽  
Gustavo Ramírez-González ◽  
Álvaro Pachón de la Cruz ◽  
...  

In medium-sized cities in developing countries, transit services without dedicated lanes have issues related to route compliance, schedules, speed control, and safety. An efficient way for dealing with this issue is the use of Information and Communication Technologies (ICT), to implement a Fleet Management and Control Systems (FMCS). Such implementation can be performed using Intelligent Transportation Systems (ITSs), which allow integration of services and adequate standardization. This article features: (a) a literature review, related to FMCS based on ITS and enabling technologies, (b) design of the ITS architecture of an FMCS, and (c) some advances in the development of the proposed FMCS in a Colombian city (Popayán). The results of the literature review allowed identifying the most important requirements of FMCS in order to design the ITS architecture and build a prototype featuring the suggested technologies. Finally, some experiments were performed to evaluate the operation of the developed prototype. The results showed evidence of adequate operation in sending and receiving messages from and to four prototypes developed for the vehicles, also complying with the established requirements of location, tracking, exchanged data, and security. This allows continuing the development of the proposed FMCS, with some adjustments.


2021 ◽  
Vol 13 (22) ◽  
pp. 12891
Author(s):  
Olasupo O. Ajayi ◽  
Antoine B. Bagula ◽  
Hloniphani C. Maluleke ◽  
Isaac A. Odun-Ayo

Intelligent Transportation Systems (ITS), also known as Smart Transportation, is an infusion of information and communication technologies into transportation. ITS are a key component of smart cities, which have seen rapid global development in the last few decades. This has in turn translated to an increase in the deployment and adoption of ITS, particularly in countries in the Western world. Unfortunately, this is not the case with the developing countries of Africa and Asia, where dilapidated road infrastructure, poorly maintained public/mass transit vehicles and poverty are major concerns. However, the impact of Westernization and “imported technologies” cannot be overlooked; thus, despite the aforementioned challenges, ITS have found their way into African cities. In this paper, a systematic review was performed to determine the state of the art of ITS in Africa. The output of this systematic review was then fed into a hybrid multi-criteria model to analyse the research landscape, identify connections between published works and reveal research gaps and inequalities in African ITS. African peculiarities inhibiting the widespread implementation of ITS were then discussed, followed by the development of a conceptual architecture for an integrated ITS for African cities.


2021 ◽  
Author(s):  
FARZAN SHENAVARMASOULEH ◽  
Farid Ghareh Mohammadi ◽  
M. Hadi Amini ◽  
Hamid R. Arabnia

<div>A smart city can be seen as a framework, comprised of Information and Communication Technologies (ICT). An intelligent network of connected devices that collect data with their sensors and transmit them using wireless and cloud technologies in order to communicate with other assets in the ecosystem plays a pivotal role in this framework. Maximizing the quality of life of citizens, making better use of available resources, cutting costs, and improving sustainability are the ultimate goals that a smart city is after. Hence, data collected from these connected devices will continuously get thoroughly analyzed to gain better insights into the services that are being offered across the city; with this goal in mind that they can be used to make the whole system more efficient.</div><div>Robots and physical machines are inseparable parts of a smart city. Embodied AI is the field of study that takes a deeper look into these and explores how they can fit into real-world environments. It focuses on learning through interaction with the surrounding environment, as opposed to Internet AI which tries to learn from static datasets. Embodied AI aims to train an agent that can See (Computer Vision), Talk (NLP), Navigate and Interact with its environment (Reinforcement Learning), and Reason (General Intelligence), all at the same time. Autonomous driving cars and personal companions are some of the examples that benefit from Embodied AI nowadays.</div><div>In this paper, we attempt to do a concise review of this field. We will go through its definitions, its characteristics, and its current achievements along with different algorithms, approaches, and solutions that are being used in different components of it (e.g. Vision, NLP, RL). We will then explore all the available simulators and 3D interactable databases that will make the research in this area feasible. Finally, we will address its challenges and identify its potentials for future research.</div>


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6309
Author(s):  
Mohammad Peyman ◽  
Pedro J. Copado ◽  
Rafael D. Tordecilla ◽  
Leandro do C. Martins ◽  
Fatos Xhafa ◽  
...  

With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing.These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustrated.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 332 ◽  
Author(s):  
Thiago Sobral ◽  
Teresa Galvão ◽  
José Borges

Intelligent Transportation Systems are an important enabler for the smart cities paradigm. Currently, such systems generate massive amounts of granular data that can be analyzed to better understand people’s dynamics. To address the multivariate nature of spatiotemporal urban mobility data, researchers and practitioners have developed an extensive body of research and interactive visualization tools. Data visualization provides multiple perspectives on data and supports the analytical tasks of domain experts. This article surveys related studies to analyze which topics of urban mobility were addressed and their related phenomena, and to identify the adopted visualization techniques and sensors data types. We highlight research opportunities based on our findings.


Sign in / Sign up

Export Citation Format

Share Document