scholarly journals Fog-Based CDN Framework for Minimizing Latency of Web Services Using Fog-Based HTTP Browser

2021 ◽  
Vol 13 (12) ◽  
pp. 320
Author(s):  
Ahmed H. Ibrahim ◽  
Zaki T. Fayed ◽  
Hossam M. Faheem

Cloud computing has been a dominant computing paradigm for many years. It provides applications with computing, storage, and networking capabilities. Furthermore, it enhances the scalability and quality of service (QoS) of applications and offers the better utilization of resources. Recently, these advantages of cloud computing have deteriorated in quality. Cloud services have been affected in terms of latency and QoS due to the high streams of data produced by many Internet of Things (IoT) devices, smart machines, and other computing devices joining the network, which in turn affects network capabilities. Content delivery networks (CDNs) previously provided a partial solution for content retrieval, availability, and resource download time. CDNs rely on the geographic distribution of cloud servers to provide better content reachability. CDNs are perceived as a network layer near cloud data centers. Recently, CDNs began to perceive the same degradations of QoS due to the same factors. Fog computing fills the gap between cloud services and consumers by bringing cloud capabilities close to end devices. Fog computing is perceived as another network layer near end devices. The adoption of the CDN model in fog computing is a promising approach to providing better QoS and latency for cloud services. Therefore, a fog-based CDN framework capable of reducing the load time of web services was proposed in this paper. To evaluate our proposed framework and provide a complete set of tools for its use, a fog-based browser was developed. We showed that our proposed fog-based CDN framework improved the load time of web pages compared to the results attained through the use of the traditional CDN. Different experiments were conducted with a simple network topology against six websites with different content sizes along with a different number of fog nodes at different network distances. The results of these experiments show that with a fog-based CDN framework offloading autonomy, latency can be reduced by 85% and enhance the user experience of websites.

Cloud computing is considered to be technological revolution in the past decade, due to its reliability and flexibility in enabling anything-as-a-service to the end users based on the key principle of utility computing. With the advent of IoT and Real-time data processing continuous usage of cloud services have incremented the dependency levels of Cloud Data Centres which in a while required high processing power as well as it will be hazardous to the environment. Addressing this problem several research studies have identified FoG Computing as a next generation computing platform that enhances the performance of the cloud servers by processing the data at the edge devices. This paper presents a novel fog computing framework that enhances the performance of the data migration reducing the effort on cloud servers.


Cloud services have taken the IT world by storm by making its services available to everyone over large geographic area. With the increasing amount of data generate every minute it has become increasing difficult to manage resources and the storage. Thus, data compression techniques like data de duplication that aims at executing the redundancy of data and forming chunks of data that can be stored on a distributed system can be proved to a logistic solution. But when it comes to cloud problems like security has always been a major issue. In order to eliminate these challenges, we need to implement a layer of fog computing they would deal with the shortcomings of cloud computing and at the same time present a filtration front before the incoming data.


Author(s):  
P. Sudheer ◽  
T. Lakshmi Surekha

Cloud computing is a revolutionary computing paradigm, which enables flexible, on-demand, and low-cost usage of computing resources, but the data is outsourced to some cloud servers, and various privacy concerns emerge from it. Various schemes based on the attribute-based encryption have been to secure the cloud storage. Data content privacy. A semi anonymous privilege control scheme AnonyControl to address not only the data privacy. But also the user identity privacy. AnonyControl decentralizes the central authority to limit the identity leakage and thus achieves semi anonymity. The  Anonymity –F which fully prevent the identity leakage and achieve the full anonymity.


Author(s):  
VINITHA S P ◽  
GURUPRASAD E

Cloud computing has been envisioned as the next generation architecture of IT enterprise. It moves the application software and databases to the centralized large data centers where management of data and services may not be fully trustworthy. This unique paradigm brings out many new security challenges like, maintaining correctness and integrity of data in cloud. Integrity of cloud data may be lost due to unauthorized access, modification or deletion of data. Lacking of availability of data may be due to the cloud service providers (CSP), in order to increase their margin of profit by reducing the cost, CSP may discard rarely accessed data without detecting in timely fashion. To overcome above issues, flexible distributed storage, token utilizing, signature creations used to ensure integrity of data, auditing mechanism used assists in maintaining the correctness of data and also locating, identifying of server where exactly the data has been corrupted and also dependability and availability of data achieved through distributed storage of data in cloud. Further in order to ensure authorized access to cloud data a admin module has been proposed in our previous conference paper, which prevents unauthorized users from accessing data and also selective storage scheme based on different parameters of cloud servers proposed in previous paper, in order to provide efficient storage of data in the cloud. In order to provide more efficiency in this paper dynamic data operations are supported such as updating, deletion and addition of data.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Amr M. Sauber ◽  
Passent M. El-Kafrawy ◽  
Amr F. Shawish ◽  
Mohamed A. Amin ◽  
Ismail M. Hagag

The main goal of any data storage model on the cloud is accessing data in an easy way without risking its security. A security consideration is a major aspect in any cloud data storage model to provide safety and efficiency. In this paper, we propose a secure data protection model over the cloud. The proposed model presents a solution to some security issues of cloud such as data protection from any violations and protection from a fake authorized identity user, which adversely affects the security of the cloud. This paper includes multiple issues and challenges with cloud computing that impairs security and privacy of data. It presents the threats and attacks that affect data residing in the cloud. Our proposed model provides the benefits and effectiveness of security in cloud computing such as enhancement of the encryption of data in the cloud. It provides security and scalability of data sharing for users on the cloud computing. Our model achieves the security functions over cloud computing such as identification and authentication, authorization, and encryption. Also, this model protects the system from any fake data owner who enters malicious information that may destroy the main goal of cloud services. We develop the one-time password (OTP) as a logging technique and uploading technique to protect users and data owners from any fake unauthorized access to the cloud. We implement our model using a simulation of the model called Next Generation Secure Cloud Server (NG-Cloud). These results increase the security protection techniques for end user and data owner from fake user and fake data owner in the cloud.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shurui Gao ◽  
Weidong Meng

PurposeCloud-based technologies are reliably improving Information Technology (IT) environment incorporating changes and modifications to the present business structure. Cloud computing enables small and medium-sized businesses (SMBs) to organize and exchange pertinent data and information in real time. This study checks out the influence of cloud-based services (IT infrastructure, expenses of cloud services, cloud data security and IT knowledge of human resources) on customers' satisfaction in SMBs.Design/methodology/approachCloud computing offers a way to coordinate and share organizational and personal information and data. The adoption of cloud services is one of the most emerging technological advances in the current competitive business environment. Cloud-based services allow start-ups or SMBs to take advantage of technological advancements and respond more quickly to changing consumer demands. In the available literature, cloud computing has received a lot of attention. However, there is also a research gap in creating a paradigm that links the value development drivers in the electronic industry with the leveraging impact of cloud and intercloud computing resources for start-ups and SMBs. A hypothetical model was constructed based on a literature review, and the associations between the latent variables were investigated utilizing structural equations.FindingsFindings from the study confirmed the validity of the proposed model for customer satisfaction assessment. Besides, the results showed that customer satisfaction is affected by cloud-based services in SMBs. The results illustrated that IT infrastructure influences customer satisfaction significantly and positively, with a T-value of 2.42. Also, the results confirmed that the cost of cloud services with a T-value of 2.68 affects customer satisfaction significantly and positively. Cloud data security also impacts customer satisfaction with a T-value of 5.20. The results also showed that the IT knowledge of human resources affects customer satisfaction with a T-value of 3.01.Originality/valueThe main originality of this research is proposing a new conceptual model to assess the impact of cloud-based services on the satisfaction of the customers in SMBs.


Author(s):  
Saravanan K ◽  
P. Srinivasan

Cloud IoT has evolved from the convergence of Cloud computing with Internet of Things (IoT). The networked devices in the IoT world grow exponentially in the distributed computing paradigm and thus require the power of the Cloud to access and share computing and storage for these devices. Cloud offers scalable on-demand services to the IoT devices for effective communication and knowledge sharing. It alleviates the computational load of IoT, which makes the devices smarter. This chapter explores the different IoT services offered by the Cloud as well as application domains that are benefited by the Cloud IoT. The challenges on offloading the IoT computation into the Cloud are also discussed.


Author(s):  
Ajai K. Daniel

The cloud-based computing paradigm helps organizations grow exponentially through means of employing an efficient resource management under the budgetary constraints. As an emerging field, cloud computing has a concept of amalgamation of database techniques, programming, network, and internet. The revolutionary advantages over conventional data computing, storage, and retrieval infrastructures result in an increase in the number of organizational services. Cloud services are feasible in all aspects such as cost, operation, infrastructure (software and hardware) and processing. The efficient resource management with cloud computing has great importance of higher scalability, significant energy saving, and cost reduction. Trustworthiness of the provider significantly influences the possible cloud user in his selection of cloud services. This chapter proposes a cloud service selection model (CSSM) for analyzing any cloud service in detail with multidimensional perspectives.


Author(s):  
Akashdeep Bhardwaj

This article describes how the rise of fog computing to improve cloud computing performance and the acceptance of smart devices is slowly but surely changing our future and shaping the computing environment around us. IoT integrated with advances in low cost computing, storage and power, along with high speed networks and big data, supports distributed computing. However, much like cloud computing, which are under constant security attacks and issues, distributed computing also faces similar challenges and security threats. This can be mitigated to a great extent using fog computing, which extends the limits of Cloud services to the last mile edge near to the nodes and networks, thereby increasing the performance and security levels. Fog computing also helps increase the reach and comes across as a viable solution for distributed computing. This article presents a review of the academic literature research work on the Fog Computing. The authors discuss the challenges in Fog environment and propose a new taxonomy.


Author(s):  
Mais Haj Qasem ◽  
Alaa Abu-Srhan ◽  
Hutaf Natoureah ◽  
Esra Alzaghoul

Fog-computing is a new network architecture and computing paradigm that uses user or near-users devices (network edge) to carry out some processing tasks. Accordingly, it extends the cloud computing with more flexibility the one found in the ubiquitous networks. A smart city based on the concept of fog-computing with flexible hierarchy is proposed in this paper. The aim of the proposed design is to overcome the limitations of the previous approaches, which depends on using various network architectures, such as cloud-computing, autonomic network architecture and ubiquitous network architecture. Accordingly, the proposed approach achieves a reduction of the latency of data processing and transmission with enabled real-time applications, distribute the processing tasks over edge devices in order to reduce the cost of data processing and allow collaborative data exchange among the applications of the smart city. The design is made up of five major layers, which can be increased or merged according to the amount of data processing and transmission in each application. The involved layers are connection layer, real-time processing layer, neighborhood linking layer, main-processing layer, data server layer. A case study of a novel smart public car parking, traveling and direction advisor is implemented using IFogSim and the results showed that reduce the delay of real-time application significantly, reduce the cost and network usage compared to the cloud-computing paradigm. Moreover, the proposed approach, although, it increases the scalability and reliability of the users’ access, it does not sacrifice much time, nor cost and network usage compared to fixed fog-computing design.


Sign in / Sign up

Export Citation Format

Share Document