scholarly journals Derivation of a Viscous Serre–Green–Naghdi Equation: An Impasse?

Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 135
Author(s):  
Denys Dutykh ◽  
Hervé V.J. Le Meur

In this article, we present the current status of the derivation of a viscous Serre–Green–Naghdi system. For this goal, the flow domain is separated into two regions. The upper region is governed by inviscid Euler equations, while the bottom region (the so-called boundary layer) is described by Navier–Stokes equations. We consider a particular regime binding the Reynolds number and the shallowness parameter. The computations presented in this article are performed in the fully nonlinear regime. The boundary layer flow reduces to a Prandtl-like equation that we claim to be irreducible. Further approximations are necessary to obtain a tractable model.

2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


2008 ◽  
Vol 614 ◽  
pp. 315-327 ◽  
Author(s):  
UWE EHRENSTEIN ◽  
FRANÇOIS GALLAIRE

A separated boundary-layer flow at the rear of a bump is considered. Two-dimensional equilibrium stationary states of the Navier–Stokes equations are determined using a nonlinear continuation procedure varying the bump height as well as the Reynolds number. A global instability analysis of the steady states is performed by computing two-dimensional temporal modes. The onset of instability is shown to be characterized by a family of modes with localized structures around the reattachment point becoming almost simultaneously unstable. The optimal perturbation analysis, by projecting the initial disturbance on the set of temporal eigenmodes, reveals that the non-normal modes are able to describe localized initial perturbations associated with the large transient energy growth. At larger time a global low-frequency oscillation is found, accompanied by a periodic regeneration of the flow perturbation inside the bubble, as the consequence of non-normal cancellation of modes. The initial condition provided by the optimal perturbation analysis is applied to Navier–Stokes time integration and is shown to trigger the nonlinear ‘flapping’ typical of separation bubbles. It is possible to follow the stationary equilibrium state on increasing the Reynolds number far beyond instability, ruling out for the present flow case the hypothesis of some authors that topological flow changes are responsible for the ‘flapping’.


1998 ◽  
Vol 359 ◽  
pp. 1-22 ◽  
Author(s):  
FEDERICO DOMENICHINI ◽  
GIANNI PEDRIZZETTI

The axisymmetric boundary-layer separation of an incompressible impulsively started flow in a wavy-walled tube is analysed at moderate to high values of the Reynolds number. The investigation is carried out by numerical integration of either the Navier–Stokes equations or Prandtl's asymptotic formulation of the boundary-layer problem. The presence of an adverse pressure gradient induces reverse flow at the tube wall independently of the Reynolds number; its occurrence can be predicted by a timescale analysis. Following that, the viscous calculations show different dynamics depending on the Reynolds number. As the Reynolds number increases, the boundary layer has in a well-defined internal structure where longitudinal lengthscales become comparable with the viscous one. Thus the boundary-layer scaling fails locally, with a minimum of pressure inside the boundary layer itself. The formation of the primary recirculation is well captured by the asymptotic model which, however, is not able to describe the roll-up of the vortex structure inside the recirculating region. This inadequacy appears well before the flow evolves to the characteristic terminal singularity usually assumed as foreshadowing the vortex shedding phenomenon. The outcomes are compared with the existing results of analogous problems giving an overall agreement but improving, in some cases, the physical picture.


1974 ◽  
Vol 62 (2) ◽  
pp. 289-304 ◽  
Author(s):  
K. Stewartson

The model proposed by Smith & Stewartson (1973), to describe the separated boundary layer induced by strong injection over a finite length of a flat plate in a supersonic mainstream, is shown to provide the basis for a fully consistent solution of the Navier–Stokes equations for this problem, valid in the limit of infinite Reynolds number. The solution takes the form of asymptotic expansions in each of a large number of overlapping regions of the flow field, which are consistently matched across areas of common validity.


2011 ◽  
Vol 687 ◽  
pp. 171-193 ◽  
Author(s):  
J. M. Lopez ◽  
F. Marques

AbstractA librating cylinder consists of a rotating cylinder whose rate of rotation is modulated. When the mean rotation rate is large compared with the viscous damping rate, the flow may support inertial waves, depending on the frequency of the modulation. The modulation also produces time-dependent boundary layers on the cylinder endwalls and sidewall, and the sidewall boundary layer flow in particular is susceptible to instabilities which can introduce additional forcing on the interior flow with time scales different from the modulation period. These instabilities may also drive and/or modify the inertial waves. In this paper, we explore such flows numerically using a spectral-collocation code solving the Navier–Stokes equations in order to capture the dynamics involved in the interactions between the inertial waves and the viscous boundary layer flows.


Author(s):  
Ali Heydari ◽  
Bahar Firoozabadi ◽  
Hamid Fazelli

Abstract This paper presents an analysis of flow and heat transfer over a rotating axsisymmetric body of revolution in a mixed convective heat transfer along with surface conditions of heating or cooling as well as surface transpriation. Boundary-layer approximation reduces the elliptic Navier-Stokes equations to parabolic equations, where the Keller-Cebeci method of finite-difference solution is used to solve the resulting system of partial-differential equations. Comparison of the calculated values of the velocity and temperature profiles as well as the shear and the heat transfer coefficients at the surface for the case of a sphere with the available literature data indicate the model well predicts the boundary-layer flow and heat transfer over a rotating axsisymmetric body.


2021 ◽  
Vol 927 ◽  
Author(s):  
Warren R. Smith ◽  
Qianxi Wang

Small viscous effects in high-Reynolds-number rotational flows always accumulate over time to have a leading-order effect. Therefore, the high-Reynolds-number limit for the Navier–Stokes equations is singular. It is important to investigate whether a solution of the Euler equations can approximate a real flow at large Reynolds number. These facts are often overlooked and, as a result, the Euler equations are used to simulate laminar rotational flows at large Reynolds number. Based on the Fredholm alternative, an asymptotic perturbation theory is described to establish secularity conditions determined by viscosity for an inviscid solution to approximate a real viscous fluid. Four important classical inviscid solutions are investigated using the theory with the following conclusions. The Stuart cats’ eyes and Mallier–Maslowe vortices are inconsistent with any real fluid at high Reynolds number; whereas Hill's spherical vortex is confirmed to be consistent with a steady state in the spherical core region and the Lamb–Chaplygin dipole is found to be consistent with a quasi-steady state in the circular core region. These solutions have been widely used for analysing the stability of vortex flows and wakes, and their interactions with shock waves or bubbles. Serendipitously, we have revealed an original exact solution of the Navier–Stokes equations which is time dependent, has non-zero nonlinear convective terms and is restricted to a finite domain with the decay rate depending on dipole radius.


2015 ◽  
Vol 765 ◽  
pp. 612-631 ◽  
Author(s):  
E. Appelquist ◽  
P. Schlatter ◽  
P. H. Alfredsson ◽  
R. J. Lingwood

AbstractNumerical simulations of the flow developing on the surface of a rotating disk are presented based on the linearized incompressible Navier–Stokes equations. The boundary-layer flow is perturbed by an impulsive disturbance within a linear global framework, and the effect of downstream turbulence is modelled by a damping region further downstream. In addition to the outward-travelling modes, inward-travelling disturbances excited at the radial end of the simulated linear region, $r_{end}$, by the modelled turbulence are included within the simulations, potentially allowing absolute instability to develop. During early times the flow shows traditional convective behaviour, with the total energy slowly decaying in time. However, after the disturbances have reached $r_{end}$, the energy evolution reaches a turning point and, if the location of $r_{end}$ is at a Reynolds number larger than approximately $R=594$ (radius non-dimensionalized by $\sqrt{{\it\nu}/{\rm\Omega}^{\ast }}$, where ${\it\nu}$ is the kinematic viscosity and ${\rm\Omega}^{\ast }$ is the rotation rate of the disk), there will be global temporal growth. The global frequency and mode shape are clearly imposed by the conditions at $r_{end}$. Our results suggest that the linearized Ginzburg–Landau model by Healey (J. Fluid Mech., vol. 663, 2010, pp. 148–159) captures the (linear) physics of the developing rotating-disk flow, showing that there is linear global instability provided the Reynolds number of $r_{end}$ is sufficiently larger than the critical Reynolds number for the onset of absolute instability.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Muhammad Adil Sadiq

Boundary layer flow of the Newtonian fluid that is caused by the vibration of inner sphere while the outer sphere is at rest is calculated. Vishik-Lyusternik (Nayfeh refers to this method as the method of composite expansions) method is employed to construct an asymptotic expansion of the solution of the Navier-Stokes equations in the limit of high-frequency vibrations for Reynolds number ofO(1). The effect of the Stokes drift of fluid particles is also considered.


Sign in / Sign up

Export Citation Format

Share Document