high frequency vibrations
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 42)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 34 (4) ◽  
pp. 538-547
Author(s):  
Duncan W. Shaw

The article of Apffel et al. [Nature 585, 48 (2020)] reported on an experiment that produced the sight of two miniature sailboats floating upside down to each other on the two sides of a layer of glycerol that was levitated by high frequency vibrations. The vessel on the underside of the glycerol is a remarkable display of the results of simulated gravity caused by vibrations. The present article considers this and other experiments on simulated gravity and finds that they provide support for the flowing aether concept of the cause of gravity.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012068
Author(s):  
Z Murčinková ◽  
S Radchenko ◽  
G Kuchtová

Abstract The structured composite can involve the porous materials providing the important internal damping that is usable in mechanical engineering applications. The stiff base material is equipped by layer/s of softer porous material/s covered by constrained layer. Such layered structure is characterized by increased internal damping in vibration process. Paper analyses some either measured or simulated mechanical properties of designed layered porous composites. Novelty provided in paper is a specific application of structured composite for damping the high frequency vibrations in resonance frequency obtaining the beneficial results, e.g. 40-48% of maximum amplitude reduction.


Author(s):  
Yiqing Meng ◽  
László E Kollár

The present research proposes two vibration control techniques for attenuating vibration of laboratory-scale suspended cables. The technique is applied to resolve the problems of such high-frequency vibrations as the aeolian vibration. The vibration control device involves an absorber driven by a motor, and the dynamics of the controlled system is investigated numerically considering practical problems. Particular attention is paid to backlash at the driving that influences the effectiveness of control significantly, and to the time response of the controlled system that indicates how quickly the vibration decays after a change in the excitation. One of the proposed controllers involves the implementation of PID technique that enables the significant reduction in the value of cable displacement and acceleration during aeolian vibration, compared to the conventional vibration absorber. An extensive controller has also been proposed based on estimation of cable vibration frequency. The dynamic performance of the controllers is simulated using Simulink. Results also reveals the limitations in the control due to a practical problem like backlash. The main practical benefit from the study is that it provides information about the advantages and disadvantages of the control methodologies, and recommendation may be done for their application without building the controlled system.


2021 ◽  
Author(s):  
Ian Robertson ◽  
Matthew Padaon ◽  
Manoj Thota

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 885
Author(s):  
Jiajun Jiang ◽  
Joshua M. R. Muir ◽  
Feiwu Zhang

The vibrational and thermodynamic properties of minerals are key to understanding the phase stability and the thermal structure of the Earth’s mantle. In this study, we modeled hydrous iron-bearing bridgmanite (Brg) and post-perovskite (PPv) with different [Fe3+-H] defect configurations using first-principles calculations combined with quasi-harmonic approximations (QHA). Fe3+-H configurations can be vibrationally stable in Brg and PPv; the site occupancy of this defect will strongly affect its thermodynamic properties and particularly its response to pressure. The presence of Fe3+-H introduces distinctive high-frequency vibrations to the crystal. The frequency of these peaks is configuration dependence. Of the two defect configurations, [FeSi′+OH·] makes large effects on the thermodynamic properties of Brg and PPv, whereas [VMg″+FeMg·+OH·] has negligible effects. With an expected lower mantle water concentrations of <1000 wt. ppm the effect of Fe3+-H clusters on properties such as heat capacity and thermal expansion is negligible, but the effect on the Grüneisen parameter γ can be significant (~1.2%). This may imply that even a small amount of water may affect the anharmonicity of Fe3+-bearing MgSiO3 in lower mantle conditions and that when calculating the adiabaticity of the mantle, water concentrations need to be considered.


Author(s):  
Lars Gerhardsson ◽  
Christina Ahlstrand ◽  
Per Ersson ◽  
Per Jonsson ◽  
Ewa Gustafsson

Abstract Purpose The development of vascular and neurosensory findings were studied in two groups of long-term exposed quarry and foundry workers with different vibration exposures, working conditions and work tasks. Methods The study included 10 quarry workers (mean age 43 yrs., mean exposure time 16 yrs.) and 15 foundry workers (35 yrs.; 11 yrs.) at two plants in Sweden. All participants completed a basic questionnaire and passed a medical examination including a number of neurosensory tests, e.g. the determination of vibration (VPT) and temperature (TPT) perception thresholds as well as a musculoskeletal examination of the neck, shoulders, arms and hands. Results A high prevalence of neurosensory findings (40%) was found among the quarry workers. Both groups, however, showed a low prevalence of vibration white fingers (VWF). Foundry workers showed significantly better sensitivity than quarry workers for all monofilament tests (p ≤ 0.016), TPT warmth in dig 2 (p = 0.048) and 5 dexter (p = 0.008), and in dig 5 sinister (p = 0.005). They also showed a better VPT performance in dig 5 dexter (p = 0.031). Conclusions Despite high vibration exposure, the prevalence of VWF was low. The high prevalence of neurosensory findings among the quarry workers may depend on higher A(8) vibration exposure and higher exposure to high-frequency vibrations. An age-effect and exposure to cold could also be contributing factors. The nervous system seems to be more susceptible to high-frequency vibrations than the vascular system. For neurosensory injuries, the current ISO 5349-1 standard is not applicable.


Author(s):  
Yan Pan ◽  
Fabing Duan ◽  
François Chapeau-Blondeau ◽  
Liyan Xu ◽  
Derek Abbott

Vibrational resonance (VR) intentionally applies high-frequency periodic vibrations to a nonlinear system, in order to obtain enhanced efficiency for a number of information processing tasks. Note that VR is analogous to stochastic resonance where enhanced processing is sought via purposeful addition of a random noise instead of deterministic high-frequency vibrations. Comparatively, due to its ease of implementation, VR provides a valuable approach for nonlinear signal processing, through detailed modalities that are still under investigation. In this paper, VR is investigated in arrays of nonlinear processing devices, where a range of high-frequency sinusoidal vibrations of the same amplitude at different frequencies are injected and shown capable of enhancing the efficiency for estimating unknown signal parameters or for detecting weak signals in noise. In addition, it is observed that high-frequency vibrations with differing frequencies can be considered, at the sampling times, as independent random variables. This property allows us here to develop a probabilistic analysis—much like in stochastic resonance—and to obtain a theoretical basis for the VR effect and its optimization for signal processing. These results provide additional insight for controlling the capabilities of VR for nonlinear signal processing. This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 1)’.


Vestnik MGSU ◽  
2021 ◽  
pp. 75-90
Author(s):  
Ekaterina A. Gridasova ◽  
Maria A. Sereda ◽  
Shokhrukh S. Zakirov ugli

Introduction. Pipeline systems are exposed to several conditions that lead to a drastic reduction in their durability, primarily due to variable low-frequency and high-frequency loads arising in a process pipeline due to the operation of compressor units. Hence, fatigue failure occurs, leading to the pipeline failure. As early as at the pipeline installation stage, sections of process pipelines have weld connections, and thermal welding cycles have an adverse effect on the properties of materials exposed to fatigue loading. The study of weld connections in steel pipelines exposed to high-frequency vibrations and effects of weld seam defects on durability characteristics are the focus of this research. Materials and methods. Low-carbon pipeline steel St20 was selected for the study. The radiographic inspection method, optical metallography, microhardness of structural phases, and the method of high-frequency fatigue tests were used. Results. The results and principal conclusions about the effect of welding defects on durability characteristics of welded samples, made of pipeline steel and exposed to high-frequency fatigue tests, are presented; structural changes in weld connections are analyzed using optical metallography and microhardness methods. Defects of weld seams and their dimensions were identified by means of radiographic inspection. A comparative analysis of durability limits, demonstrated by the parent metal of the model material that has defective weld connections, and the same limits of defect-free samples is provided. The main causes of failure of weld joints, exposed to high-frequency vibrations, are identified. Conclusions. Having summarized the research findings, we can argue that high-frequency vibrations have a negative impact on the parent metal of a process pipeline and its weld joints. The weld seam is the point of failure; defects trigger destruction, and their presence has a higher impact on fatigue characteristics than their dimensions or types. Characteristics of durability in case of exposure to high frequency loading applied to a weld joint in the gigacycle range are 67 percent below those of the parent metal.


Sign in / Sign up

Export Citation Format

Share Document