scholarly journals Fluidic-Oscillator-Based Pulsed Jet Actuators for Flow Separation Control

Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 166
Author(s):  
Stephan Löffler ◽  
Carola Ebert ◽  
Julien Weiss

The control of flow separation on aerodynamic surfaces remains a fundamental goal for future air transportation. On airplane wings and control surfaces, the effects of flow separation include decreased lift, increased drag, and enhanced flow unsteadiness and noise, all of which are detrimental to flight performance, fuel consumption, and environmental emissions. Many types of actuators have been designed in the past to counter the negative effects of flow separation, from passive vortex generators to active methods like synthetic jets, plasma actuators, or sweeping jets. At the Chair of Aerodynamics at TU Berlin, significant success has been achieved through the use of pulsed jet actuators (PJA) which operate by ejecting a given amount of fluid at a specified frequency through a slit-shape slot on the test surface, thereby increasing entrainment and momentum in a separating boundary layer and thus delaying flow separation. Earlier PJAs were implemented using fast-switching solenoid valves to regulate the jet amplitude and frequency. In recent years, the mechanical valves have been replaced by fluidic oscillators (FO) in an attempt to generate the desired control authority without any moving parts, thus paving the way for future industrial applications. In the present article, we present in-depth flow and design analysis which affect the operation of such FO-based PJAs. We start by reviewing current knowledge on the mechanism of flow separation control with PJAs before embarking on a detailed analysis of single-stage FO-based PJAs. In particular, we show that there is a fundamental regime where the oscillation frequency is mainly driven by the feedback loop length. Additionally, there are higher-order regimes where the oscillation frequency is significantly increased. The parameters that influence the oscillation in the different regimes are discussed and a strategy to incorporate this new knowledge into the design of future actuators is proposed.

Author(s):  
Marlyn Y. Andino ◽  
John C. Lin ◽  
Anthony E. Washburn ◽  
Edward A. Whalen ◽  
Emilio C. Graff ◽  
...  

2007 ◽  
Vol 78 (3-4) ◽  
pp. 255-281 ◽  
Author(s):  
Clyde Warsop ◽  
Martyn Hucker ◽  
Andrew J. Press ◽  
Paul Dawson

2005 ◽  
Vol 127 (2) ◽  
pp. 367-376 ◽  
Author(s):  
J. L. Gilarranz ◽  
L. W. Traub ◽  
O. K. Rediniotis

Although the potential of synthetic jets as flow separation control actuators has been demonstrated in the existing literature, there is a large gap between the synthetic jet actuators (SJA) used in laboratory demonstrations and the SJAs needed in realistic, full-scale applications, in terms of compactness, weight, efficiency, control authority and power density. In most cases, the SJAs used in demonstrations are either too large or too weak for realistic applications. In this work, we present the development of a new class of high-power synthetic jet actuators for realistic flow control applications. The operating principle of the actuator is the same as that of crankshaft driven piston engines, which makes a significant part of the technology necessary for the actuator development available off-the-shelf. The design of the actuator is modular and scalable. Several “building block” units can be stacked in series to create the actuator of the desired size. Moreover, active exit slot reconfiguration, in the form of variable exit slot width, decouples the actuator frequency from the actuator jet momentum coefficient and allows the user to set the two independently (within limits). Part I of this paper presents the design, fabrication and bench top characterization of the actuator. Several versions of the actuator were designed, built and tested, leading up to the development of a six-piston compact actuator that has a maximum power consumption of 1200 W (1.6 hp) and can produce (for the tested conditions) peak exit velocities as high as 124 m/s. In Part II, the actuator was housed in the interior of a NACA0015 profiled wing with a chord of 0.375 m (14.75 inches). The assembly’s performance in controlling flow separation was studied in the wind tunnel.


Sign in / Sign up

Export Citation Format

Share Document