scholarly journals From Soil to Grape and Wine: Geographical Variations in Elemental Profiles in Different Chinese Regions

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3108
Author(s):  
Xiaoyun Hao ◽  
Feifei Gao ◽  
Hao Wu ◽  
Yangbo Song ◽  
Liang Zhang ◽  
...  

Elemental profiles are frequently applied to identify the geographical origin and authenticity of food products, to guarantee quality. The concentrations of fifteen major, minor, and trace elements (Na, Mg, K, Ca, Al, Fe, Mn, Cu, Zn, Rb, Sr, Li, Cd, Cs, and Ba) were determined in soils, “Meili” grapes, and wines from six regions in China by inductively coupled plasma mass spectrometry (ICP-MS). The elemental concentrations in these samples, according to the geographical origins, were analyzed by one-way analysis of variance (ANOVA) with Duncan’s multiple comparisons. The bioconcentration factor (BCF) from soil to grape and the transfer factor (TF) from grape to wine were calculated. Mg, K, Ca, Cu, Zn, Rb, Sr, and Ba presented higher BCF values than the other seven elements. The TF values of six elements (Na, Mg, K, Zn, Li, and Cs) were found to be greater than one. Moreover, the correlation of element content between the pairs of soil–grape, grape–wine, and bioconcentration factor (BCF)–environmental factor were analyzed. Significant correspondences among soil, grape, and wine were observed for K and Li. Two elements (Sr and Li) showed significant correlations between BCF and environmental factor (relative humidity, temperature, and latitude). A linear discriminant analysis (LDA) with three variables (K, Sr, Li) revealed a high accuracy (>90%) to determine the geographical origin for different Chinese regions.

2018 ◽  
pp. 129-138
Author(s):  
Nikolett Czipa ◽  
Andrea Kántor ◽  
Loránd Alexa ◽  
Béla Kovács

Six macroelements and twelve microelements were identified in thirty-six Hungarian acacia honeys collected from ten counties by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). One-Way ANOVA (LSD and Dunnett T3 test) and linear discriminant analysis (LDA) were used to determine the statistically verified differences among the honey samples with different geographical origin. Significant differences were established among the samples from different counties in Na, P, S, Fe, Ni, Cu and Sr concentrations. Based on the macroelement content of honeys, the separation of samples with different geographical origin was not successful because the percent of correctly categorised cases was only 64.9%. However, examining the As, B, Ba, Cu, Fe Mn, Ni and Sr concentration, the separation of different groups was convincing since the percent of correctly classified cases was 97.2%. Thus, the examination of microelement concentration may be able to determine the geographical origin of acacia honeys.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2349
Author(s):  
Supalak Kongsri ◽  
Phitchan Sricharoen ◽  
Nunticha Limchoowong ◽  
Chunyapuk Kukusamude

Rice is a staple food for more than half of the world’s population. The discrimination of geographical origin of rice has emerged as an important issue to prevent mislabeling and adulteration problems and ensure food quality. Here, the discrimination of Thai Hom Mali rice (THMR), registered as a European Protected Geographical Indication (PGI), was demonstrated. Elemental compositions (Mn, Rb, Co, and Mo) and stable isotope (δ18O) in the rice were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and elemental analyzer isotope ratio mass spectrometry (EA-IRMS), respectively. The recoveries and precisions of all elements were greater than 98% and lower than 9%, respectively. The analytical precision (±standard deviation) was below ±0.2‰ for δ18O measurement. Mean of Mn, Rb, Co, Mo, and δ18O levels was 14.0 mg kg−1, 5.39 mg kg−1, 0.049 mg kg−1, 0.47 mg kg−1, and 25.22‰, respectively. Only five valuable markers combined with radar plots and multivariate analysis, linear discriminant analysis (LDA) could distinguish THMR cultivated from three contiguous provinces with correct classification and cross-validation of 96.4% and 92.9%, respectively. These results offer valuable insight for the sustainable management and regulation of improper labeling regarding geographical origin of rice in Thailand and other countries.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Trung Nguyen-Quang ◽  
Minh Bui-Quang ◽  
Minh Truong-Ngoc

Inductively coupled plasma mass spectrometry (ICP-MS) analytical method was used to determine the content of 40 elements in 38 soybean samples (Glycine Max) from 4 countries. Multivariate statistical methods, such as principal components analysis (PCA), were performed to analyze the obtained data to establish the provenance of the soybeans. Although soybean is widely marketed in many countries, no universal method is used to discriminate the origin of these cereals. Our study introduced the initial step to the identification of the geographical origin of commercial soybean marketed in Vietnam. The analysis pointed out that there are significant differences in the mean of 33 of the 40 analyzed elements among 4 countries’ soybean samples, namely, 11B, 27Al, 44Ca, 45Sc, 47Ti, 55Mn, 56Fe, 59Co, 60Ni, 63Cu, 66Zn, 69Ga, 75As, 78Se, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 95Mo, 103Rh, 137Ba, 163Dy, 165Ho, 175Lu, 178Hf, 181Ta, 182W, 185Re, 197Au, 202Hg, 205Tl, and 208Pb. The PCA analysis showed that the soybean samples can be classified correctly according to their original locations. This research can be used as a prerequisite for future studies of using the combination of elemental composition analysis with statistical classification methods for an accurate provenance establishment of soybean, which determined a variation of key markers for the original discrimination of soybean.


OENO One ◽  
2014 ◽  
Vol 48 (1) ◽  
pp. 21 ◽  
Author(s):  
Patrícia Martins ◽  
Manuel Madeira ◽  
Fernando Monteiro ◽  
Raúl Bruno de Sousa ◽  
António Sérgio Curvelo-Garcia ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: The control of geographical origin is one of the most challenging topics regarding wine authenticity. The aim of the present study was to assess the <sup>87</sup>Sr/<sup>86</sup>Sr ratio of vineyard soils from Portuguese Denominations of Origin (DO) and evaluate its suitability as a tool for origin authentication.</p><p style="text-align: justify;"><strong>Methods and results</strong>: An analytical protocol was optimized (chromatographic separation of Sr and Rb, followed by inductively coupled plasma-mass spectrometry (ICP-MS) analysis) for <sup>87</sup>Sr/<sup>86</sup>Sr isotopic ratio determination in soil-wine system. The <sup>87</sup>Sr/<sup>86</sup>Sr ratios of soils from four vineyards located in three Portuguese DO (Dão, Óbidos and Palmela), established on distinct soil types, were determined. Significant differences were found between soils of different DO regions. The soil in the Dão DO, developed on granites, showed a statistically higher <sup>87</sup>Sr/<sup>86</sup>Sr ratio than the other soils, which were developed on sedimentary formations.</p><p style="text-align: justify;"><strong>Conclusion</strong>: The results show clearly that <sup>87</sup>Sr/<sup>86</sup>Sr ratio may represent a suitable fingerprint for these Portuguese DO.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This study highlights the relevance of setting up an international databank of <sup>87</sup>Sr/<sup>86</sup>Sr values for use for geographical identification and authentication.</p>


2020 ◽  
Vol 10 (7) ◽  
pp. 1141-1148
Author(s):  
Xueting Ma ◽  
Jiukai Zhang ◽  
Jinzhong Liang ◽  
Ying Chen

Edible bird's nest (EBN) is a high-value health-promoting tonic from swiftlets. However, cheap House-EBN is usually masqueraded as expensive Cave-EBN for profiteering. Efficient scientific means are required to trace Cave-EBN. After microwave digestion of EBN lyophilizing powder, its mineral element compositions were examined by using inductively coupled plasma-mass spectrometry (ICP-MS). Influences of two key factors, production environment and country, on the distribution of 21 elements were analyzed. Linear Discriminant Analysis (LDA) coupled with leave-one out cross validation was applied for modeling. Classifier generalization performance was assessed by the Confusion Matrix approach. ICP-MS identified the presence of 21 macro and micro elements with contributions of 99.65% and 0.35%, respectively. A two-way ANOVA established that B, Na, K, Ca, Mn, Cu, Sr, and Cd were the production-environment-specific elements. Among four different combinations based on three potential variables (Ca, Na, and Sr), Na/Ca was identified as the best among them having 100% specificity on tracing Cave-EBN. In conclusion, EBN was a good mineral element source. The methodology of integration of ICP-MS with chemo-metrics proved to be a powerful tool for tracing Cave-EBN.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document