scholarly journals Influence of the Brewing Temperature on the Taste of Espresso

Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Johanna A. Klotz ◽  
Gertrud Winkler ◽  
Dirk W. Lachenmeier

Very hot (>65 °C) beverages such as espresso have been evaluated by the International Agency for Research on Cancer (IARC) as probably carcinogenic to humans. For this reason, research into lowering beverage temperature without compromising its quality or taste is important. For espresso, one obvious possibility consists in lowering the brewing temperature. In two sensory trials using the ISO 4120:2004 triangle test methodology, brewing temperatures of 80 °C vs. 128 °C and 80 °C vs. 93 °C were compared. Most tasters were unable to distinguish between 80 °C and 93 °C. The results of these pilot experiments prove the possibility of decreasing the health hazards of very hot beverages by lower brewing temperatures.

Author(s):  
Johanna A. Klotz ◽  
Gertrud Winkler ◽  
Dirk W. Lachenmeier

Very hot (> 65 °C) beverages such as espresso were evaluated by the International Agency for Research on Cancer (IARC) as probably carcinogenic to humans. For this reason, research into lowering beverage temperature without compromising its quality or taste is important. For espresso, one obvious possibility consists in lowering the brewing temperature. In two sensory trials using ISO 4120:2004 triangle test methodology, brewing temperatures of 80°C vs. 128°C and 80° vs. 93°C were compared. From the tested levels, espresso brewed at the lowest temperature had the highest acceptance. However, most tasters were unable to distinguish between 80°C and 93°C. The results of these pilot experiments proof the possibility to decrease the health hazard of very hot beverages by lower brewing temperatures.


Author(s):  
R. L. Lyles ◽  
S. J. Rothman ◽  
W. Jäger

Standard techniques of electropolishing silver and silver alloys for electron microscopy in most instances have relied on various CN recipes. These methods have been characteristically unsatisfactory due to difficulties in obtaining large electron transparent areas, reproducible results, adequate solution lifetimes, and contamination free sample surfaces. In addition, there are the inherent health hazards associated with the use of CN solutions. Various attempts to develop noncyanic methods of electropolishing specimens for electron microscopy have not been successful in that the specimen quality problems encountered with the CN solutions have also existed in the previously proposed non-cyanic methods.The technique we describe allows us to jet polish high quality silver and silver alloy microscope specimens with consistant reproducibility and without the use of CN salts.The solution is similar to that suggested by Myschoyaev et al. It consists, in order of mixing, 115ml glacial actic acid (CH3CO2H, specific wt 1.04 g/ml), 43ml sulphuric acid (H2SO4, specific wt. g/ml), 350 ml anhydrous methyl alcohol, and 77 g thiourea (NH2CSNH2).


1992 ◽  
Vol 37 (3) ◽  
pp. 267-267
Author(s):  
Thomas D. Oakland
Keyword(s):  

Author(s):  
Jenny Fan ◽  
Dave Mark

Abstract Metal interconnect defects have become a more serious yield detractor as backend process complexity has increased from a single layer to about 10 layers. This paper introduces a test methodology to monitor and localize the metal defects based on FPGA products. The test patterns are generated for each metal layer. The results not only indicate the severity of defects for each metal layer, but also accurately isolate open/short defects.


Sign in / Sign up

Export Citation Format

Share Document