scholarly journals Novel Blotting Method for Mass Spectrometry Imaging of Metabolites in Strawberry Fruit by Desorption/Ionization Using Through Hole Alumina Membrane

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 408 ◽  
Author(s):  
Hirofumi Enomoto ◽  
Masahiro Kotani ◽  
Takayuki Ohmura

Mass spectrometry imaging (MSI) using matrix-assisted laser desorption/ionization (MALDI) is a powerful technique for visualizing metabolites in the strawberry fruit. During sample preparation for MALDI-MSI, sectioning of the samples is usually required. In general, MALDI-MSI analysis of strawberry fruits that are larger than a single glass slide is difficult because thin sections cannot be prepared. In this study, we attempted to visualize metabolites in large strawberry fruits by MSI, employing a blotting method that uses desorption ionization using a through-hole alumina membrane (DIUTHAME) chip. Large strawberry fruits were cut and a DIUTHAME chip was set on the cross-section to blot the metabolites. After drying the DIUTHAME chip, the metabolites were measured in positive and negative ion modes using a commercial MALDI-type mass spectrometer. Several peaks were detected in both the ion modes. Various metabolites related to food quality, such as sugars, organic acids, and anthocyanins, were detected and successfully visualized by blotting on a DIUTHAME chip in MSI. These results suggest that blotting using a DIUTHAME chip in MSI is useful for visualizing the metabolites present in the strawberry fruit.

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 103 ◽  
Author(s):  
Hirofumi Enomoto ◽  
Senji Takahashi ◽  
Shiro Takeda ◽  
Hajime Hatta

Flavan-3-ols, which comprise proanthocyanidins and their monomers, are major flavonoids in strawberries, and they have a wide range of biological activities and health benefits. However, their spatial distribution in strawberry fruit remains poorly understood. Therefore, we performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI), to visualize flavan-3-ols in ripe strawberry fruit. Peaks matching the m/z values of flavan-3-ols [M − H]− ions were detected in the negative ion mode using 1,5-diaminonaphthalene as matrix. Catechin and/or epicatechin, three B-type procyanidins, and two B-type propelargonidins were identified by MALDI-tandem MS. These flavan-3-ols were mainly distributed in the calyx, in and around the vascular bundles, and in the skin. In-source fragmentation of proanthocyanidins was determined using their standards, suggesting their distribution was mixed ion images of themselves, and fragment ions generated from those had a higher degree of polymerization. B-type procyanidins were predominantly distributed in the vascular bundles than in the skin, whereas B-type propelargonidins were almost equally distributed between the vascular bundles and skin, suggesting that their distribution patterns are different from the type of their flavan-3-ol monomers. Flavan-3-ols, especially B-type procyanidins, may help prevent pathogen infection not only in the skin but also in and around the vascular bundles.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 610
Author(s):  
Mariann Inga Van Meter ◽  
Salah M. Khan ◽  
Brynne V. Taulbee-Cotton ◽  
Nathan H. Dimmitt ◽  
Nathan D. Hubbard ◽  
...  

Agglomeration of active pharmaceutical ingredients (API) in tablets can lead to decreased bioavailability in some enabling formulations. In a previous study, we determined that crystalline APIs can be detected as agglomeration in tablets formulated with amorphous acetaminophen tablets. Multiple method advancements are presented to better resolve agglomeration caused by crystallinity in standard tablets. In this study, we also evaluate three “budget” over-the-counter headache medications (subsequently labeled as brands A, B, and C) for agglomeration of the three APIs in the formulation: Acetaminophen, aspirin, and caffeine. Electrospray laser desorption ionization mass spectrometry imaging (ELDI-MSI) was used to diagnose agglomeration in the tablets by creating molecular images and observing the spatial distributions of the APIs. Brand A had virtually no agglomeration or clustering of the active ingredients. Brand B had extensive clustering of aspirin and caffeine, but acetaminophen was observed in near equal abundance across the tablet. Brand C also had extensive clustering of aspirin and caffeine, and minor clustering of acetaminophen. These results show that agglomeration with active ingredients in over-the-counter tablets can be simultaneously detected using ELDI-MS imaging.


Sign in / Sign up

Export Citation Format

Share Document