scholarly journals Fractal Dimensions of Cell Wall in Growing Cotton Fibers

2020 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Michael Ioelovich

In this research, fractal properties of a cell wall in growing cotton fibers were studied. It was found that dependences of specific pore volume (P) and apparent density (ρ) on the scale factor, F = H/h, can be expressed by power-law equations: P = Po F(Dv−E) and ρ = ρo F(E−Dρ), where h is minimum thickness of the microfibrilar network in the primary cell wall, H is total thickness of cell wall in growing cotton, Dv = 2.556 and Dρ = 2.988 are fractal dimensions. From the obtained results it follows that microfibrilar network of the primary cell wall in immature fibers is loose and disordered, and therefore it has an increased pore volume (Po = 0.037 cm3/g) and low density (ρo = 1.47 g/cm3). With enhance days post anthesis of growing cotton fibers, the wall thickness and density increase, while the pore volume decreases, until dense structure of completely mature fibers is formed with maximum density (1.54 g/cm3) and minimum pore volume (0.006 cm3/g). The fractal dimension for specific pore volume, Dv = 2.556, evidences the mixed surface-volume sorption mechanism of sorbate vapor in the pores. On the other hand, the fractal dimension for apparent density, Dρ = 2.988, is very close to Euclidean volume dimension, E = 3, for the three-dimensional space.

2009 ◽  
Vol 150 (2) ◽  
pp. 684-699 ◽  
Author(s):  
Bir Singh ◽  
Utku Avci ◽  
Sarah E. Eichler Inwood ◽  
Mark J. Grimson ◽  
Jeff Landgraf ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 3 ◽  
Author(s):  
Michael Ioelovich

In this research, the fractal structure of beads of different sizes obtained by the spray-drying of aqueous dispersions of microcrystalline cellulose (MCC) was studied. These beads were formed as a result of the aggregation of rod-shaped cellulose nanocrystalline particles (CNP). It was found that increasing the average radius (R) of the formed MCC beads resulted in increased specific pore volume (P) and reduced apparent density (ρ). The dependences of P and ρ on the scale factor (R/r) can be expressed by power-law equations: P = Po (R/r)E−Dp and ρ = d (R/r)Dd−E, where the fractal dimensions Dp = 2.887 and Dd = 2.986 are close to the Euclidean dimension E = 3 for three-dimensional space; r = 3 nm is the radius of the cellulose nanocrystalline particles, Po = 0.03 cm3/g is the specific pore volume, and d = 1.585 g/cm3 is the true density (specific gravity) of the CNP, respectively. With the increase in the size of the formed MCC beads, the order in the packing of the beads was distorted, conforming to theory of the diffusion-limited aggregation process.


2020 ◽  
Vol 165 ◽  
pp. 112374 ◽  
Author(s):  
Lincai Chen ◽  
Ziyu Han ◽  
Xintong Fan ◽  
Shuaihua Zhang ◽  
Jiehua Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document