Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells

2004 ◽  
Vol 161 (3) ◽  
pp. 641-675 ◽  
Author(s):  
Stephen C. Fry
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Paulraj ◽  
S. Wennmalm ◽  
D.C.F. Wieland ◽  
A. V. Riazanova ◽  
A. Dėdinaitė ◽  
...  

AbstractThe structural integrity of living plant cells heavily relies on the plant cell wall containing a nanofibrous cellulose skeleton. Hence, if synthetic plant cells consist of such a cell wall, they would allow for manipulation into more complex synthetic plant structures. Herein, we have overcome the fundamental difficulties associated with assembling lipid vesicles with cellulosic nanofibers (CNFs). We prepare plantosomes with an outer shell of CNF and pectin, and beneath this, a thin layer of lipids (oleic acid and phospholipids) that surrounds a water core. By exploiting the phase behavior of the lipids, regulated by pH and Mg2+ ions, we form vesicle-crowded interiors that change the outer dimension of the plantosomes, mimicking the expansion in real plant cells during, e.g., growth. The internal pressure enables growth of lipid tubules through the plantosome cell wall, which paves the way to the development of hierarchical plant structures and advanced synthetic plant cell mimics.


2009 ◽  
Vol 150 (2) ◽  
pp. 684-699 ◽  
Author(s):  
Bir Singh ◽  
Utku Avci ◽  
Sarah E. Eichler Inwood ◽  
Mark J. Grimson ◽  
Jeff Landgraf ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1715
Author(s):  
Eleftheria Roumeli ◽  
Leah Ginsberg ◽  
Robin McDonald ◽  
Giada Spigolon ◽  
Rodinde Hendrickx ◽  
...  

Individual plant cells are the building blocks for all plantae and artificially constructed plant biomaterials, like biocomposites. Secondary cell walls (SCWs) are a key component for mediating mechanical strength and stiffness in both living vascular plants and biocomposite materials. In this paper, we study the structure and biomechanics of cultured plant cells during the cellular developmental stages associated with SCW formation. We use a model culture system that induces transdifferentiation of Arabidopsis thaliana cells to xylem vessel elements, upon treatment with dexamethasone (DEX). We group the transdifferentiation process into three distinct stages, based on morphological observations of the cell walls. The first stage includes cells with only a primary cell wall (PCW), the second covers cells that have formed a SCW, and the third stage includes cells with a ruptured tonoplast and partially or fully degraded PCW. We adopt a multi-scale approach to study the mechanical properties of cells in these three stages. We perform large-scale indentations with a micro-compression system in three different osmotic conditions. Atomic force microscopy (AFM) nanoscale indentations in water allow us to isolate the cell wall response. We propose a spring-based model to deconvolve the competing stiffness contributions from turgor pressure, PCW, SCW and cytoplasm in the stiffness of differentiating cells. Prior to triggering differentiation, cells in hypotonic pressure conditions are significantly stiffer than cells in isotonic or hypertonic conditions, highlighting the dominant role of turgor pressure. Plasmolyzed cells with a SCW reach similar levels of stiffness as cells with maximum turgor pressure. The stiffness of the PCW in all of these conditions is lower than the stiffness of the fully-formed SCW. Our results provide the first experimental characterization of the mechanics of SCW formation at single cell level.


2020 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Michael Ioelovich

In this research, fractal properties of a cell wall in growing cotton fibers were studied. It was found that dependences of specific pore volume (P) and apparent density (ρ) on the scale factor, F = H/h, can be expressed by power-law equations: P = Po F(Dv−E) and ρ = ρo F(E−Dρ), where h is minimum thickness of the microfibrilar network in the primary cell wall, H is total thickness of cell wall in growing cotton, Dv = 2.556 and Dρ = 2.988 are fractal dimensions. From the obtained results it follows that microfibrilar network of the primary cell wall in immature fibers is loose and disordered, and therefore it has an increased pore volume (Po = 0.037 cm3/g) and low density (ρo = 1.47 g/cm3). With enhance days post anthesis of growing cotton fibers, the wall thickness and density increase, while the pore volume decreases, until dense structure of completely mature fibers is formed with maximum density (1.54 g/cm3) and minimum pore volume (0.006 cm3/g). The fractal dimension for specific pore volume, Dv = 2.556, evidences the mixed surface-volume sorption mechanism of sorbate vapor in the pores. On the other hand, the fractal dimension for apparent density, Dρ = 2.988, is very close to Euclidean volume dimension, E = 3, for the three-dimensional space.


Sign in / Sign up

Export Citation Format

Share Document