scholarly journals Kinetic Model for Drying in Frame of Generalized Fractional Derivatives

2020 ◽  
Vol 4 (2) ◽  
pp. 17
Author(s):  
Ramazan Ozarslan ◽  
Erdal Bas

In this article, the Lewis model was considered for the soybean drying process by new fractional differential operators to analyze the estimated time in 50 ∘ C , 60 ∘ C , 70 ∘ C , and 80 ∘ C . Moreover, we used dimension parameters for the physical meaning of these fractional models within generalized and Caputo fractional derivatives. Results obtained with generalized fractional derivatives were analyzed comparatively with the Caputo fractional, integer order derivatives and Page model for the soybean drying process. All results for fractional derivatives are discussed and compared in detail.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Assia Guezane-Lakoud ◽  
Adem Kılıçman

Abstract The purpose of this study is to discuss the existence of solutions for a boundary value problem at resonance generated by a nonlinear differential equation involving both right and left Caputo fractional derivatives. The proofs of the existence of solutions are mainly based on Mawhin’s coincidence degree theory. We provide an example to illustrate the main result.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ming-Sheng Hu ◽  
Ravi P. Agarwal ◽  
Xiao-Jun Yang

We introduce the wave equation in fractal vibrating string in the framework of the local fractional calculus. Our particular attention is devoted to the technique of the local fractional Fourier series for processing these local fractional differential operators in a way accessible to applied scientists. By applying this technique we derive the local fractional Fourier series solution of the local fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag-Leffler function.


2017 ◽  
Vol 17 (4) ◽  
pp. 661-678 ◽  
Author(s):  
Harbir Antil ◽  
Sören Bartels

AbstractFractional differential operators provide an attractive mathematical tool to model effects with limited regularity properties. Particular examples are image processing and phase field models in which jumps across lower dimensional subsets and sharp transitions across interfaces are of interest. The numerical solution of corresponding model problems via a spectral method is analyzed. Its efficiency and features of the model problems are illustrated by numerical experiments.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012031
Author(s):  
E.A. Abdel-Rehim

Abstract The fractional calculus gains wide applications nowadays in all fields. The implementation of the fractional differential operators on the partial differential equations make it more reality. The space-time-fractional differential equations mathematically model physical, biological, medical, etc., and their solutions explain the real life problems more than the classical partial differential equations. Some new published papers on this field made many treatments and approximations to the fractional differential operators making them loose their physical and mathematical meanings. In this paper, I answer the question: why do we need the fractional operators?. I give brief notes on some important fractional differential operators and their Grünwald-Letnikov schemes. I implement the Caputo time fractional operator and the Riesz-Feller operator on some physical and stochastic problems. I give some numerical results to some physical models to show the efficiency of the Grünwald-Letnikov scheme and its shifted formulae. MSC 2010: Primary 26A33, Secondary 45K05, 60J60, 44A10, 42A38, 60G50, 65N06, 47G30,80-99


2021 ◽  
Vol 5 (1) ◽  
pp. 279-287
Author(s):  
Zeinab Toghani ◽  
◽  
Luis Gaggero-Sager ◽  

There are many possible definitions of derivatives, here we present some and present one that we have called generalized that allows us to put some of the others as a particular case of this but, what interests us is to determine that there is an infinite number of possible definitions of fractional derivatives, all are correct as differential operators each of them must be properly defined its algebra. We introduce a generalized version of fractional derivative that extends the existing ones in the literature. To those extensions it is associated a differentiable operator and a differential ring and applications that shows the advantages of the generalization. We also review the different definitions of fractional derivatives and it is shown how the generalized version contains the previous ones as a particular cases.


Author(s):  
Mohamed Houas ◽  
Mohamed Bezziou

In this paper, we discuss the existence, uniqueness and stability of solutions for a nonlocal boundary value problem of nonlinear fractional differential equations with two Caputo fractional derivatives. By applying the contraction mapping and O’Regan fixed point theorem, the existence results are obtained. We also derive the Ulam-Hyers stability of solutions. Finally, some examples are given to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document