scholarly journals Hadamard-Type Fractional Heat Equations and Ultra-Slow Diffusions

2021 ◽  
Vol 5 (2) ◽  
pp. 48
Author(s):  
Alessandro De Gregorio ◽  
Roberto Garra

In this paper, we study diffusion equations involving Hadamard-type time-fractional derivatives related to ultra-slow random models. We start our analysis using the abstract fractional Cauchy problem, replacing the classical time derivative with the Hadamard operator. The stochastic meaning of the introduced abstract differential equation is provided, and the application to the particular case of the fractional heat equation is then discussed in detail. The ultra-slow behaviour emerges from the explicit form of the variance of the random process arising from our analysis. Finally, we obtain a particular solution for the nonlinear Hadamard-diffusive equation.


Author(s):  
Ibrahim Karatay ◽  
Nurdane Kale ◽  
Serife Bayramoglu

AbstractIn this paper, we consider the numerical solution of a time-fractional heat equation, which is obtained from the standard diffusion equation by replacing the first-order time derivative with the Caputo derivative of order α, where 0 < α < 1. The main purpose of this work is to extend the idea on the Crank-Nicholson method to the time-fractional heat equations. By the method of the Fourier analysis, we prove that the proposed method is stable and the numerical solution converges to the exact one with the order O(τ 2-α + h 2), conditionally. Numerical experiments are carried out to support the theoretical claims.



Author(s):  
Fatma Al-Musalhi ◽  
Erkinjon Karimov

In this paper, we have considered two different sub-diffusion equations involving Hilfer, hyper-Bessel and Erdelyi-Kober fractional derivatives. Using a special transformation, we equivalently reduce the considered boundary value problems for fractional partial differential equation to the corresponding problem for ordinary differential equation. An essential role is played by certain properties of Erd\'elyi-Kober integral and differential operators. We have applied also successive iteration method to obtain self-similar solutions in an explicit form. The obtained self-similar solutions are represented by generalized Wright type function. We have to note that the usage of imposed conditions is important to present self-similar solutions via given data.



Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 979
Author(s):  
Sandeep Kumar ◽  
Rajesh K. Pandey ◽  
H. M. Srivastava ◽  
G. N. Singh

In this paper, we present a convergent collocation method with which to find the numerical solution of a generalized fractional integro-differential equation (GFIDE). The presented approach is based on the collocation method using Jacobi poly-fractonomials. The GFIDE is defined in terms of the B-operator introduced recently, and it reduces to Caputo fractional derivative and other fractional derivatives in special cases. The convergence and error analysis of the proposed method are also established. Linear and nonlinear cases of the considered GFIDEs are numerically solved and simulation results are presented to validate the theoretical results.



Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 211
Author(s):  
Garland Culbreth ◽  
Mauro Bologna ◽  
Bruce J. West ◽  
Paolo Grigolini

We study two forms of anomalous diffusion, one equivalent to replacing the ordinary time derivative of the standard diffusion equation with the Caputo fractional derivative, and the other equivalent to replacing the time independent diffusion coefficient of the standard diffusion equation with a monotonic time dependence. We discuss the joint use of these prescriptions, with a phenomenological method and a theoretical projection method, leading to two apparently different diffusion equations. We prove that the two diffusion equations are equivalent and design a time series that corresponds to the anomalous diffusion equation proposed. We discuss these results in the framework of the growing interest in fractional derivatives and the emergence of cognition in nature. We conclude that the Caputo fractional derivative is a signature of the connection between cognition and self-organization, a form of cognition emergence different from the other source of anomalous diffusion, which is closely related to quantum coherence. We propose a criterion to detect the action of self-organization even in the presence of significant quantum coherence. We argue that statistical analysis of data using diffusion entropy should help the analysis of physiological processes hosting both forms of deviation from ordinary scaling.



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Assia Guezane-Lakoud ◽  
Adem Kılıçman

Abstract The purpose of this study is to discuss the existence of solutions for a boundary value problem at resonance generated by a nonlinear differential equation involving both right and left Caputo fractional derivatives. The proofs of the existence of solutions are mainly based on Mawhin’s coincidence degree theory. We provide an example to illustrate the main result.



2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Vasily E. Tarasov

Fractional diffusion equations for three-dimensional lattice models based on fractional-order differences of the Grünwald-Letnikov type are suggested. These lattice fractional diffusion equations contain difference operators that describe long-range jumps from one lattice site to another. In continuum limit, the suggested lattice diffusion equations with noninteger order differences give the diffusion equations with the Grünwald-Letnikov fractional derivatives for continuum. We propose a consistent derivation of the fractional diffusion equation with the fractional derivatives of Grünwald-Letnikov type. The suggested lattice diffusion equations can be considered as a new microstructural basis of space-fractional diffusion in nonlocal media.



Sign in / Sign up

Export Citation Format

Share Document