scholarly journals Finding Rare Quasars: VLA Snapshot Continuum Survey of FRI Quasar Candidates Selected from the LOFAR Two-Metre Sky Survey (LoTSS)

Galaxies ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Gülay Gürkan ◽  
Judith Croston ◽  
Martin J. Hardcastle ◽  
Vijay Mahatma ◽  
Beatriz Mingo ◽  
...  

The radiative and jet power in active galactic nuclei is generated by accretion of material on to supermassive galactic-centre black holes. For quasars, where the radiative power is by definition very high, objects with high radio luminosities form ∼10 per cent of the population, although it is not clear whether this is a stable phase. Traditionally, quasars with high radio luminosities have been thought to present jets with edge-brightened morphology (Fanaroff-Riley II−FR II) due to the limitations of previous radio surveys (i.e., FRIs were not observed as part of the quasar population). The LOw Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) with its unprecedented sensitivity and resolution covering wide sky areas has enabled the first systematic selection and investigation of quasars with core-brightened morphology (Fanaroff-Riley I−FR). We carried out a Very Large Array (VLA) snapshot survey to reveal inner structures of jets in selected quasar candidates; 15 (25 per cent) out of 60 sources show clear inner jet structures that are diagnostic of FRI jets and 13 quasars (∼22 per cent) show extended structures similar to those of FRI jets. Black hole masses and Eddington ratios do not show a clear difference between FRI and FRII quasars. FRII quasars tend to have higher jet powers than FRI quasars. Our results show that the occurrence of FRI jets in powerful radiatively efficient systems is not common, probably mainly due to two factors: galaxy environment and jet power.

2013 ◽  
Vol 9 (S304) ◽  
pp. 95-95
Author(s):  
Francesco Massaro ◽  
R. D'Abrusco ◽  
M. Giroletti ◽  
A. Paggi ◽  
N. Masetti ◽  
...  

AbstractAbout one third of the gamma-ray sources detected by Fermi have still no firmly established counterpart at lower energies. Here we propose a new approach to find candidate counterparts for the unidentified gamma-ray sources (UGSs) based on the 325 MHz radio survey performed with Westerbork Synthesis Radio Telescope (WSRT) in the northern hemisphere. First we investigate the low-frequency radio properties of blazars, the largest known population of gamma-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO VLA Sky survey (NVSS). We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in literature to look for infrared and optical counterparts of the gamma-ray blazar candidates selected with the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research we identify 23 new gamma-ray blazar candidates out of 32 UGSs investigated. I will also present the first analysis of very low frequency radio emission of blazars based on the recent Very Large Array Low-Frequency Sky Survey (VLSS) at 74 MHz. I show that blazars present radio flat spectra when evaluated at 74 MHz, about an order of magnitude in frequency lower than previous analyses. The implications of these findings in the contest of the blazars – radio galaxies connection will be discussed.


Radio Science ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
W. M. Lane ◽  
W. D. Cotton ◽  
J. F. Helmboldt ◽  
N. E. Kassim

2014 ◽  
Vol 440 (1) ◽  
pp. 327-338 ◽  
Author(s):  
W. M. Lane ◽  
W. D. Cotton ◽  
S. van Velzen ◽  
T. E. Clarke ◽  
N. E. Kassim ◽  
...  

2002 ◽  
Vol 199 ◽  
pp. 25-31
Author(s):  
N. Udaya Shankar

The Mauritius Radio Telescope (MRT) is a Fourier synthesis instrument which has been built to fill the gap in the availability of deep sky surveys at low radio frequencies in the southern hemisphere. It is situated in the north-east of Mauritius at a southern latitude of 20°.14 and an eastern longitude of 57°.73. The aim of the survey with the MRT is to contribute to the database of southern sky sources in the declination range −70° ≤ δ ≤ −10°, covering the entire 24 hours of right ascension, with a resolution of 4' × 4'.6sec(δ + 20.14°) and a point source sensitivity of 200 mJy (3σ level) at 151.5 MHz.MRT is a T-shaped non-coplanar array consisting of a 2048 m long East-West arm and a 880 m long South arm. In the East-West arm 1024 fixed helices are arranged in 32 groups and in the South arm 16 trolleys, with four helices on each, which move on a rail are used. A 512 channel, 2-bit 3-level complex correlation receiver is used to measure the visibility function. At least 60 days of observing are required for obtaining the visibilities up to the 880 m spacing. The calibrated visibilities are transformed taking care of the non-coplanarity of the array to produce an image of the area of the sky under observation.This paper will describe the telescope, the observations carried out so far, a few interesting aspects of imaging with this non-coplanar array and present results of a low resolution survey (13' × 18') covering roughly 12 hours of right ascension, and also present an image with a resolution of 4' × 4'.6sec(δ + 20.14°) made using the telescope.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2466
Author(s):  
Qingwen Rao ◽  
Guanjun Xu ◽  
Wangchen Mao

In this paper, the detection of the lunar surface soil permittivity with megahertz electromagnetic (EM) waves by spaceborne radar is studied based on the EM scattering theory, the Boltzmann–Shukla equations, and the improved scattering matrix method (ISMM). The reflection characteristics of the lunar surface soil subject to megahertz waves are analyzed through the EM scattering theory and expressed by the lunar surface soil permittivity. Then, the lunar ionosphere is assumed to be composed of dusty plasma, and its EM characteristics are described with the Boltzmann–Shukla equations. Finally, the transmission and reflection characteristics of the propagation of EM waves in the lunar ionosphere are numerically calculated with ISMM. Thus, the complex permittivity of lunar surface soil is obtained. In addition, the effects of detection environment situations, such as the lunar illumination intensity, characteristics of the lunar dust and dust charging process in the lunar ionosphere, on the amplitude and phase of EM waves are also investigated in this study. The simulation results show that an EM wave at a high frequency induces a strong effective wave with a stable phase shift and a significantly small interferential wave. Moreover, the lunar illumination is more effective under EM waves in low frequency bands; the characteristics of the lunar dust have a notable influence on the transmission and absorption coefficients of the effective waves. These conclusions help in real applications involving the detection of the lunar surface soil permittivity by spaceborne radar in various lunar environments.


2018 ◽  
Vol 14 (S344) ◽  
pp. 255-258
Author(s):  
Volker Heesen ◽  
Aritra Basu ◽  
Elias Brinks ◽  
George Heald ◽  
Andrew Fletcher ◽  
...  

AbstractLow-mass dwarf irregular galaxies are subject to outflows, in which cosmic rays may play a very important role; they can be traced via their electron component, the cosmic ray electrons (CRe), in the radio continuum as non-thermal synchrotron emission. With the advent of sensitive low-frequency observations, such as with the Low-Frequency Array (LOFAR), we can trace CRe far away from star formation sites. Together with GHz-observations, such as with the Very Large Array (VLA), we can study spatially resolved radio continuum spectra at matched angular resolution and sensitivity. Here, we present results from our 6-GHz VLA survey of 40 nearby dwarf galaxies and our LOFAR study of the nearby starburst dwarf irregular galaxy IC 10. We explore the relation of RC emission with star formation tracers and study in IC 10 the nature of a low-frequency radio halo, which we find to be the result of a galactic wind.


2002 ◽  
Vol 199 ◽  
pp. 474-483
Author(s):  
Namir E. Kassim ◽  
T. Joseph W. Lazio ◽  
William C. Erickson ◽  
Patrick C. Crane ◽  
R. A. Perley ◽  
...  

Decametric wavelength imaging has been largely neglected in the quest for higher angular resolution because ionospheric structure limited interferometric imaging to short (< 5 km) baselines. The long wavelength (LW, 2—20 m or 15—150 MHz) portion of the electromagnetic spectrum thus remains poorly explored. The NRL-NRAO 74 MHz Very Large Array has demonstrated that self-calibration techniques can remove ionospheric distortions over arbitrarily long baselines. This has inspired the Low Frequency Array (LOFAR)—-a fully electronic, broad-band (15—150 MHz)antenna array which will provide an improvement of 2—3 orders of magnitude in resolution and sensitivity over the state of the art.


2013 ◽  
Vol 9 (S303) ◽  
pp. 464-466
Author(s):  
M. Rickert ◽  
F. Yusef-Zadeh ◽  
C. Brogan

AbstractWe analyze a high resolution (114″ × 60″) 74 MHz image of the Galactic center taken with the Very Large Array (VLA). We have identified several absorption and emission features in this region, and we discuss preliminary results of two Galactic center sources: the Sgr D complex (G1.1–0.1) and the Galactic center lobe (GCL).The 74 MHz image displays the thermal and nonthermal components of Sgr D and we argue the Sgr D supernova remnant (SNR) is consistent with an interaction with a nearby molecular cloud and the location of the Sgr D Hii region on the near side of the Galactic center. The image also suggests that the emission from the eastern side of the GCL contains a mixture of both thermal and nonthermal sources, whereas the western side is primarily thermal.


Sign in / Sign up

Export Citation Format

Share Document