scholarly journals Powerful Jets from Radiatively Efficient Disks, a Decades-Old Unresolved Problem in High Energy Astrophysics

Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Chandra B. Singh ◽  
David Garofalo ◽  
Benjamin Lang

The discovery of 3C 273 in 1963, and the emergence of the Kerr solution shortly thereafter, precipitated the current era in astrophysics focused on using black holes to explain active galactic nuclei (AGN). But while partial success was achieved in separately explaining the bright nuclei of some AGN via thin disks, as well as powerful jets with thick disks, the combination of both powerful jets in an AGN with a bright nucleus, such as in 3C 273, remained elusive. Although numerical simulations have taken center stage in the last 25 years, they have struggled to produce the conditions that explain them. This is because radiatively efficient disks have proved a challenge to simulate. Radio quasars have thus been the least understood objects in high energy astrophysics. But recent simulations have begun to change this. We explore this milestone in light of scale-invariance and show that transitory jets, possibly related to the jets seen in these recent simulations, as some have proposed, cannot explain radio quasars. We then provide a road map for a resolution.

1988 ◽  
Vol 20 (1) ◽  
pp. 671-675
Author(s):  
C.J. Cesarsky ◽  
R.A. Sunyaev ◽  
G.W. Clark ◽  
R. Giacconi ◽  
Vin-Yue Qu ◽  
...  

The european X-ray observatory (EXOSAT), which was launched in 1983 and which finished operations in April 1986, has brought a rich harvest of results in the period 1984-1987, surveyed here. The EXOSAT payload consisted of three sets of instruments: two low energy imaging telescopes (LE:E<2 KeV), a medium-energy experiment (ME:E=l-50KeV) and a gas scintillation proportional counter (GSPC:E=2-20KeV). Over most of the energy range covered, EXOSAT was not more sensitive than its predecessor, the american EINSTEIN satellite. But the EINSTEIN satellite is far from having exhausted the treasures of the X-ray sky. And EXOSAT, thanks to its elliptical 90-hour orbit, had the extra advantage of being able to make long, continuous observations of interesting objects, lasting up to 72 hours. Thus, EXOSAT was very well suited for variability studies, and many of its most important findings are in this area. EXOSAT observations sample a vide range of astrophysical sources: X-ray binaries, cataclysmic variables and active stars; supernova remnants and the interstellar medium; active galactic nuclei, and clusters of galaxies. Among the highlights, let us mention:


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 450
Author(s):  
Athina Meli ◽  
Ken-ichi Nishikawa

Astrophysical relativistic jets in active galactic nuclei, gamma-ray bursts, and pulsars is the main key subject of study in the field of high-energy astrophysics, especially regarding the jet interaction with the interstellar or intergalactic environment. In this work, we review studies of particle-in-cell simulations of relativistic electron–proton (e−−p+) and electron–positron (e±) jets, and we compare simulations that we have conducted with the relativistic 3D TRISTAN-MPI code for unmagnetized and magnetized jets. We focus on how the magnetic fields affect the evolution of relativistic jets of different compositions, how the jets interact with the ambient media, how the kinetic instabilities such as the Weibel instability, the kinetic Kelvin–Helmholtz instability and the mushroom instability develop, and we discuss possible particle acceleration mechanisms at reconnection sites.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2019 ◽  
Vol 207 ◽  
pp. 03001 ◽  
Author(s):  
Ludwig Rauch

The IceCube neutrino observatory has discovered a flux of extragalactic neutrinos. However, the origin of these neutrinos is still unknown. Among the possible candidates are Gamma-Ray Bursts (GRBs), Core-Collapse Supernovae (SNe), Active Galactic Nuclei (AGN) and Tidal Disruption Events (TDEs) - all are accompanied by a characteristic optical counterpart. The goal of this study is thus to identify the neutrino sources by detecting their optical counterparts with the Zwicky Transient Facility (ZTF). ZTF features a high cadence northern-sky survey enabling realtime correlation of optical transients with high-energy neutrino candidates. In this talk I will highlight the multimessenger potential of ZTF for an online neutrino correlation study with Ice- Cube.


Sign in / Sign up

Export Citation Format

Share Document