scholarly journals Black Holes and Other Clues to the Quantum Structure of Gravity

Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Steven B. Giddings

Bringing gravity into a quantum-mechanical framework is likely the most profound remaining problem in fundamental physics. The “unitarity crisis” for black hole evolution appears to be a key facet of this problem, whose resolution will provide important clues. Investigating this raises the important structural question of how to think about subsystems and localization of information in quantum gravity. Paralleling field theory, the answer to this is expected to be an important ingredient in the mathematical structure of the theory. Perturbative gravity results indicate a structure different from that of quantum field theory, but suggest an avenue to defining subsystems. If black holes do behave similarly to familiar subsystems, unitarity demands new interactions that transfer entanglement from them. Such interactions can be parameterized in an effective approach, without directly addressing the question of the fundamental dynamics, whether that is associated with quantum spacetime, wormholes, or something else. Since such interactions need to extend outside the horizon, that raises the question of whether they can be constrained, or might be observed, by new electromagnetic or gravitational wave observations of strong gravity regions. This note overviews and provides connections between these developments.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Oldofredi ◽  
Hans Christian Öttinger

AbstractMany attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, after the discussion of its principal implications and consequences, we compare it with the main Bohmian QFTs implementing a particle ontology.


2017 ◽  
Vol 13 (4) ◽  
pp. 3261-3287
Author(s):  
Marco Benini ◽  
Kasia Rejzner ◽  
Alexander Schenkel ◽  
Christoph Schweigert

An investigation is started into a possible mathematical structure of the Wheeler-DeWitt superspace quantization of general relativity. The emphasis is placed throughout on quantum field theory aspects of the problem and topics discussed include canonical commutation relations in a triad basis, the status of the constraint equation and the rôle played by perturbation theory.


2001 ◽  
Vol 13 (02) ◽  
pp. 125-198 ◽  
Author(s):  
D. GUIDO ◽  
R. LONGO ◽  
J. E. ROBERTS ◽  
R. VERCH

The first part of this paper extends the Doplicher–Haag–Roberts theory of superselection sectors to quantum field theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be defined as in flat spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the field net and the gauge group can be constructed as in Minkowski spacetime. The second part of this paper derives spin-statistics theorems on spacetimes with appropriate symmetries. Two situations are considered: First, if the spacetime has a bifurcate Killing horizon, as is the case in the presence of black holes, then restricting the observables to the Killing horizon together with "modular covariance" for the Killing flow yields a conformally covariant quantum field theory on the circle and a conformal spin-statistics theorem for charged sectors localizable on the Killing horizon. Secondly, if the spacetime has a rotation and PT symmetry like the Schwarzschild–Kruskal black holes, "geometric modular action" of the rotational symmetry leads to a spin-statistics theorem for charged covariant sectors where the spin is defined via the SU(2)-covering of the spatial rotation group SO(3).


2021 ◽  
Author(s):  
Wim Vegt

Quantum Light Theory (QLT) is the development in Quantum Field Theory (QFT). In Quantum Field Theory, the fundamental interaction fields are replacing the concept of elementary particles in Classical Quantum Mechanics. In Quantum Light Theory the fundamental interaction fields are being replaced by One Single Field. The Electromagnetic Field, generally well known as Light. To realize this theoretical concept, the fundamental theory has to go back in time 300 years, the time of Isaac Newton to follow a different path in development. Nowadays experiments question more and more the fundamental concepts in Quantum Field Theory and Classical Quantum Mechanics. The publication “Operational Resource Theory of Imaginarity“ in “Physical Review Letters” in 2021 (Ref. [2]) presenting the first experimental evidence for the measurability of “Quantum Mechanical Imaginarity” directly leads to the fundamental question in this experiment: How is it possible to measure the imaginary part of “Quantum Physical Probability Waves”? This publication provides an unambiguously answer to this fundamental question in Physics, based on the fundamental “Gravitational Electromagnetic Interaction” force densities. The “Quantum Light Theory” presents a new “Gravitational-Electromagnetic Equation” describing Electromagnetic Field Configurations which are simultaneously the Mathematical Solutions for the Quantum Mechanical “Schrodinger Wave Equation” and more exactly the Mathematical Solutions for the “Relativistic Quantum Mechanical Dirac Equation”. The Mathematical Solutions for the “Gravitational-Electromagnetic Equation” carry Mass, Electric Charge and Magnetic Spin at discrete values.


2016 ◽  
pp. 4054-4057 ◽  
Author(s):  
C. Y. Lo

The 2016 APS (American Physical Society) Medal for Exceptional Achievement in Research awarded to E. Witten for discoveries in the mathematical structure of quantum field theory, is indeed exceptional because there is no experimental support. This would be a big step backward from Galileo's experimental-based tradition. Moreover, the Selection Committee of APS was unaware that Witten does not understand general relativity and actually has made mathematical and physical mistakes that leads to the errors on general relativity in the press release of the 1993 Nobel Committee for Physics. However, an unexpected benefit of this award is that it leads to the exposition on the shortcomings in mathematics and physics of APS.


2021 ◽  
Author(s):  
Wim Vegt

Isaac Newton and Albert Einstein lived in fundamentally different time frames. An interesting question would be: “Who would win the fundamental discussion about the interaction between gravity and light”? Einstein or Newton? Einstein with the fundamental concept of a “curved space-time continuum” within a gravitational field. Or Newton with the fundamental “3rd law of equilibrium between the forces (force-densities)”. It is still the question who was right? Einstein or Newton? Einstein assumes a deformation of the space-time continuum because of a gravitational field. But in general a deformation of any medium will be caused by the change of the energy density within the medium. Like the speed of sound will increase/ decrease when we change the air pressure. However, the speed of sound (which became higher or lower) will still be the same in any direction. The change of the speed of sound will be omni-directional.A gravitational field contains a gravitational energy-density. For that reason the change in the speed of light will be omni-directional within a gravitational field (with a omni-directional gravitational energy density). Einstein however assumes a one-directional change in the speed of light, (only in the direction of the gravitational field). When the change of the speed of light was omni-directional, a beam of light would never be deflected by a gravitational field which is in contradiction with what we measure. Only the absolute value of the speed of light would change omni-directional.The theory of Newton however results in the theory of a 2-directional inertia of photons. The inertia of photons equals zero only in the direction of propagation. Perpendicular to the direction of propagation the mass density of photons is according Einstein’s E = m c^2).The inertia of photons in the direction of propagation will not change within a gravitational field. Gravity can only interact with mass (inertia). Because the mass of the photons in the direction of propagation equals zero, there will ne no interaction with the gravitational field and the photon in the direction of propagation. The speed of light in the direction of propagation will remain unaltered. But according Newton, the photon will have inertia (mass) in the directions perpendicular to the direction of propagation and for that reason the photon will interact with the gravitational field and the photon will be deflected, only in the direction of the gravitational field.And that leads to the consequence that photons will be deflected within a gravitational field when the direction of the gravitational field is perpendicular to the direction of propagation of the photons.To find fundamental mathematical evidence for this concept, we have to make use of Quantum Light Theory. Quantum Light Theory (QLT) is the development in Quantum Field Theory (QFT). In Quantum Field Theory, the fundamental interaction fields are replacing the concept of elementary particles in Classical Quantum Mechanics. In Quantum Light Theory the fundamental interaction fields are being replaced by One Single Field. The Electromagnetic Field, generally well known as Light. To realize this theoretical concept, the fundamental theory has to go back in time 300 years, the time of Isaac Newton to follow a different path in development. Nowadays experiments question more and more the fundamental concepts in Quantum Field Theory and Classical Quantum Mechanics. The publication “Operational Resource Theory of Imaginarity“ in “Physical Review Letters” in 2021 (Ref. [2]) presenting the first experimental evidence for the measurability of “Quantum Mechanical Imaginarity” directly leads to the fundamental question in this experiment: How is it possible to measure the imaginary part of “Quantum Physical Probability Waves”? This publication provides an unambiguously answer to this fundamental question in Physics, based on the fundamental “Gravitational Electromagnetic Interaction” force densities. The “Quantum Light Theory” presents a new “Gravitational-Electromagnetic Equation” describing Electromagnetic Field Configurations which are simultaneously the Mathematical Solutions for the Quantum Mechanical “Schrodinger Wave Equation” and more exactly the Mathematical Solutions for the “Relativistic Quantum Mechanical Dirac Equation”. The Mathematical Solutions for the “Gravitational-Electromagnetic Equation” carry Mass, Electric Charge and Magnetic Spin at discrete values.


2021 ◽  
Author(s):  
Wim Vegt

The fundamental principle in General Relativity is to combine the inertia of mass and the relationship with the gravity force acting on this mass. In this article a new concept in General Relativity will be introduced. The concept of the “Paradox in a Curved Space-Time Continuum”. The “Paradox in a Curved Space-Time Continuum” has been based on the fundamental question: Does light follow a curved path within a gravitational field because a gravitational field causes a “Curved Space Time Continuum” or does a curved path of a beam of light generate a Gravitational Field. Differently formulated: Is Gravity a second order effect of a curved Electromagnetic field?To answer this question a new theory will be introduced. The “Quantum Light Theory” which is a specialization of “Quantum Field Theory”.Quantum Light Theory (QLT) is the new development in Quantum Field Theory (QFT). In Quantum Field Theory, the fundamental interaction fields are replacing the concept of elementary particles in Classical Quantum Mechanics. In Quantum Light Theory the fundamental interaction fields are being replaced by One Single Field. The Electromagnetic Field, generally well known as Light. In which gravity is the second order effect of the fundamental Electromagnetic Field. To realize this theoretical concept, the fundamental theory has to go back in time 300 years, the time of Isaac Newton to follow a different path in development. Nowadays experiments question more and more the fundamental concepts in Quantum Field Theory and Classical Quantum Mechanics. The publication “Operational Resource Theory of Imaginarity“ in “Physical Review Letters” in 2021 (Ref. [2]) presenting the first experimental evidence for the measurability of “Quantum Mechanical Imaginarity” directly leads to the fundamental question in this experiment: How is it possible to measure the imaginary part of “Quantum Physical Probability Waves”? This publication provides an unambiguously answer to this fundamental question in Physics, based on the fundamental “Gravitational Electromagnetic Interaction” force densities. The “Quantum Light Theory” presents a new “Gravitational-Electromagnetic Equation” describing Electromagnetic Field Configurations which are simultaneously the Mathematical Solutions for the Quantum Mechanical “Schrodinger Wave Equation” and more exactly the Mathematical Solutions for the “Relativistic Quantum Mechanical Dirac Equation”. The Mathematical Solutions for the “Gravitational-Electromagnetic Equation” carry Mass, Electric Charge and Magnetic Spin at discrete values.


Sign in / Sign up

Export Citation Format

Share Document