scholarly journals Tandem Osmotic Engine Based on Hydrogel Particles with Antipolyelectrolyte and Polyelectrolyte Effect Fuelled by Both Salinity Gradient Modes

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 232
Author(s):  
Anjali Cheeramthodi Padmanabhan ◽  
Dong Suk Han ◽  
Sifani Zavahir ◽  
Jan Tkac ◽  
Peter Kasak

In this study, we propose a new approach to attain energy by salinity gradient engines with pistons based on hydrogels possessing polyelectrolyte and antipolyelectrolyte effects in a tandem arrangement, providing energy in each salinity gradient mode in a repeatable manner. The swelling of hydrogel with a polyelectrolyte effect and shrinking of hydrogel particles possessing an antipolyelectrolyte effect in desalinated water, and subsequent shrinking of hydrogel with polyelectrolyte and swelling of hydrogel antipolyelectrolyte effect in saline water, generate power in both increasing and decreasing salinity modes. To investigate the energy recovery, we scrutinized osmotic engine assemblies by a setup arrangement of pistons with hydrogel particles, with polyelectrolyte and antipolyelectrolyte effects, in tandem. The energy recovery from the tandem engine setup (calculated based on dry form for each polyelectrolyte polyacrylate-based hydrogel-SPA) and antipolyelectrolyte–sulfobetaine-based gel with methacrylate polymeric backbone-SBE) up to 581 J kg−1 and a mean power of 0.16 W kg−1 was obtained by the tandem setup of SPA and SBE hydrogel containing 3% crosslinking density and particle size of 500 microns with an external load of 3.0 kPa. Exchange of sulfobetaine with methacrylamide (SBAm), the main polymer backbone, revealed a positive increase in energy recovery of 670 J kg−1 with a mean power of 0.19 W kg−1 for the tandem system operating under the same parameters (SPA@SBAm). The energy recovery can be controlled, modulated and tuned by selecting both hydrogels with antipolyelectrolyte and polyelectrolyte effects and their performing parameters. This proof of concept provides blue energy harvesting by contributing both polyelectrolyte and antipolyelectrolyte effects in a single tandem setup; together with easy accessibility (diaper-based materials (SPA)) and known antibiofouling, these properties offer a robust alternative for energy harvesting.

2018 ◽  
Vol 20 (10) ◽  
pp. 7295-7302 ◽  
Author(s):  
Rui Long ◽  
Zhengfei Kuang ◽  
Zhichun Liu ◽  
Wei Liu

To evaluate the possibility of nano-fluidic reverse electrodialysis (RED) for salinity gradient energy harvesting, we consider the behavior of ion transportation in a bilayer cylindrical nanochannel with different sized nanopores connecting two reservoirs at different NaCl concentrations.


Author(s):  
Xiong-Wei Han ◽  
Wei-Bin Zhang ◽  
Xue-Jing Ma ◽  
Xia Zhou ◽  
Qiang Zhang ◽  
...  

2020 ◽  
Vol 4 (8) ◽  
pp. 4273-4284 ◽  
Author(s):  
Carolina Tristán ◽  
Marta Rumayor ◽  
Antonio Dominguez-Ramos ◽  
Marcos Fallanza ◽  
Raquel Ibáñez ◽  
...  

LCA of lab-scale and large-scale stand-alone RED stacks and an up-scaled RED system co-located with a SWRO desalination plant.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4710 ◽  
Author(s):  
Lincoln Bowen ◽  
Jordi Vinolas ◽  
José Luis Olazagoitia

Numerous authors have studied Energy Harvesting Shock Absorbers (EHSA) over the last decade, proposing different designs with diverse geometries, parameters, and components. This article analyzes the energy recovery potential of two types of rotational EHSA, those that use ball-screw and those based on cable transmission. This paper presents the design, manufacturing and mathematical modeling of both options as well as the estimation of the potential power recovery with both technologies. Two types of vehicles are used as references, each one with the characteristic curves of their shock absorbers. Results are presented for different vehicle speeds and road types. Finally, some qualitative characteristics of both EHSAs are detailed to be taken into consideration for their possible use in vehicle suspension.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Zhifei Wu ◽  
Guangzhao Xu

This paper proposes a hydraulic energy-harvesting shock absorber prototype, which realizes energy harvesting of the vibration energy dissipated by the automobile suspension system. The structural design of the proposed shock absorber ensures that the unidirectional flow of oil drives the hydraulic motor to generate electricity while obtaining an asymmetrical extension/compression damping force. A mathematical model of the energy-harvesting shock absorber is established, and the simulation results indicate that the damping force can be controlled by varying the load resistance of the feed module, thus adjusting the required damping force ratio of the compression and recovery strokes. By adjusting the external load, the target indicator performance of the shock absorber is achieved while obtaining the required energy recovery power. A series of experiments are conducted on the prototype to verify the validity of the damping characteristics and the energy recovery efficiency as well as to analyze the effect of external load and excitation speed on these characteristics.


2018 ◽  
Vol 54 (87) ◽  
pp. 12310-12313 ◽  
Author(s):  
Huihui Ren ◽  
Tianliang Xiao ◽  
Qianqian Zhang ◽  
Zhaoyue Liu

An energy-harvesting device that is capable of converting light and a salinity gradient into electricity simultaneously was demonstrated conceptually.


Sign in / Sign up

Export Citation Format

Share Document