Photosynthesis-inspired bifunctional energy-harvesting devices that convert light and salinity gradients into electricity

2018 ◽  
Vol 54 (87) ◽  
pp. 12310-12313 ◽  
Author(s):  
Huihui Ren ◽  
Tianliang Xiao ◽  
Qianqian Zhang ◽  
Zhaoyue Liu

An energy-harvesting device that is capable of converting light and a salinity gradient into electricity simultaneously was demonstrated conceptually.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5469
Author(s):  
Wei-Shan Hsu ◽  
Anant Preet ◽  
Tung-Yi Lin ◽  
Tzu-En Lin

Harvesting salinity gradient energy, also known as “osmotic energy” or “blue energy”, generated from the free energy mixing of seawater and fresh river water provides a renewable and sustainable alternative for circumventing the recent upsurge in global energy consumption. The osmotic pressure resulting from mixing water streams with different salinities can be converted into electrical energy driven by a potential difference or ionic gradients. Reversed-electrodialysis (RED) has become more prominent among the conventional membrane-based separation methodologies due to its higher energy efficiency and lesser susceptibility to membrane fouling than pressure-retarded osmosis (PRO). However, the ion-exchange membranes used for RED systems often encounter limitations while adapting to a real-world system due to their limited pore sizes and internal resistance. The worldwide demand for clean energy production has reinvigorated the interest in salinity gradient energy conversion. In addition to the large energy conversion devices, the miniaturized devices used for powering a portable or wearable micro-device have attracted much attention. This review provides insights into developing miniaturized salinity gradient energy harvesting devices and recent advances in the membranes designed for optimized osmotic power extraction. Furthermore, we present various applications utilizing the salinity gradient energy conversion.


2010 ◽  
Vol 2 (2) ◽  
pp. 80-92
Author(s):  
Rupesh Patel ◽  
Atanas A. Popov ◽  
Stewart McWilliam

RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3363-3370
Author(s):  
Ang Yang ◽  
Yu Qiu ◽  
Dechao Yang ◽  
Kehong Lin ◽  
Shiying Guo

In this paper, experimental and theoretical studies of the piezoelectric effect of two-dimensional ZnO nanostructures, including straight nanosheets (SNSs) and curved nanosheets (CNSs) are conducted.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.


2016 ◽  
Vol 3 (2) ◽  
Author(s):  
R. V. Petrov ◽  
N. A. Kolesnikov ◽  
M. I. Bichurin

AbstractThe article is devoted to researching the practical application of the magnetoelectric effect for the development of energy harvesting devices, in particular for the design of magnetoelectric synchronous generator. The energy harvesting devices are designed to provide by the energy of remote or nonvolatile electronic devices that don’t require the high power consumption. General dimensions of the generator were as follows: diameter of 12 cm, thickness of 2.4 cm. The model of generator comprising eight ME elements with dimensions of one element of 40×10×0.5 mm at the frequency of the alternating magnetic field of 38 Hz provides the output constant voltage of 1.12 V and current of 3.82 microamps. Variable voltage before the rectifier was of 1.7 V. Total generated power was of 4.28 µW. The studies of resonant and non-resonant mode of ME element were carried out. Resonance mode of ME element provides a much greater output power. Designed generator can be applied in the construction of wind power sets, hydrogenerators, turbogenerators and other power generation equipment.


Sign in / Sign up

Export Citation Format

Share Document