scholarly journals Centromeric Transcription: A Conserved Swiss-Army Knife

Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 911
Author(s):  
Ganesan Arunkumar ◽  
Daniël P. Melters

In most species, the centromere is comprised of repetitive DNA sequences, which rapidly evolve. Paradoxically, centromeres fulfill an essential function during mitosis, as they are the chromosomal sites wherein, through the kinetochore, the mitotic spindles bind. It is now generally accepted that centromeres are transcribed, and that such transcription is associated with a broad range of functions. More than a decade of work on this topic has shown that centromeric transcripts are found across the eukaryotic tree and associate with heterochromatin formation, chromatin structure, kinetochore structure, centromeric protein loading, and inner centromere signaling. In this review, we discuss the conservation of small and long non-coding centromeric RNAs, their associations with various centromeric functions, and their potential roles in disease.

1980 ◽  
Vol 8 (15) ◽  
pp. 3319-3333 ◽  
Author(s):  
Lesley W. Coggins ◽  
G.Joan Grindlay ◽  
J.Keith Vass ◽  
Alison A. Slater ◽  
Paul Montague ◽  
...  

2011 ◽  
Vol 30 (9) ◽  
pp. 1779-1786 ◽  
Author(s):  
Kun Yang ◽  
Hecui Zhang ◽  
Richard Converse ◽  
Yong Wang ◽  
Xiaoying Rong ◽  
...  

1986 ◽  
Vol 72 (2) ◽  
pp. 207-210 ◽  
Author(s):  
M. Metzlaff ◽  
W. Troebner ◽  
F. Baldauf ◽  
R. Schlegel ◽  
J. Cullum

2019 ◽  
Vol 24 (2) ◽  
pp. 82
Author(s):  
Agus Budi Setiawan ◽  
Ari Wibowo ◽  
Chee How Teo ◽  
Shinji Kikuchi ◽  
Takato Koba

Repetitive DNA sequences are highly abundant in plant genomes and are favorable probes for chromosome identification in plants. However, it is difficult to conduct studies on the details of metaphase chromosome structures in plants with small chromosomes due to their highly condensed status. Therefore, identification of homologous chromosomes for karyotyping and analyzing chromosome structures is a challenging issue for cytogeneticists without specific probes and precise chromosome stages. In this study, five repetitive DNA probes, i.e., 5S and 45S ribosomal DNAs (rDNAs), melon centromeric sequence (Cmcent), cucumber subtelomeric sequence (Type I), and microsatellite (CT)10 repeats, were used to identify primary constrictions and homologous chromosomes for karyotyping. Four and two loci of 45S rDNA were respectively observed on metaphase and pachytene chromosomes of Abelia × grandiflora. Cmcent was detected on both primary constrictions of melon pachytene and metaphase chromosomes. Furthermore, one pair of 5S rDNA signals were hybridized on melon metaphase chromosomes. Eight and two loci of 45S and 5S rDNA were respectively detected on cucumber chromosomes. Type I and (CT)10 probes were specifically hybridized on subtelomeric and interstitial regions on the chromosomes, respectively. These results suggest that repetitive DNA sequences are versatile probes for chromosome identification in plants with small chromosomes, particularly for karyotyping analyses.


Sign in / Sign up

Export Citation Format

Share Document