scholarly journals Chromosome Mapping of 5S Ribosomal Genes in Indo-Pacific and Atlantic Muraenidae: Comparative Analysis by Dual Colour Fluorescence In Situ Hybridisation

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1319
Author(s):  
Elisabetta Coluccia ◽  
Federica Deidda ◽  
Cinzia Lobina ◽  
Riccardo Melis ◽  
Cristina Porcu ◽  
...  

The Muraenidae is one of the largest and most complex anguilliform families. Despite their abundance and important ecological roles, morays are little studied, especially cytogenetically, and both their phylogenetic relationships and the taxonomy of their genera are controversial. With the aim of extending the karyology of this fish group, the chromosomal mapping of the 5S ribosomal gene family was performed on seven species belonging to the genera Muraena and Gymnothorax from both the Atlantic and Pacific oceans. Fluorescence in situ hybridisation (FISH) experiments were realized using species-specific 5S rDNA probes; in addition, two-colour FISH was performed to investigate the possible association with the 45S ribosomal gene family. Multiple 5S rDNA clusters, located either in species-specific or in possibly homoeologous chromosomes, were found. Either a syntenic or different chromosomal location of the two ribosomal genes was detected. Our results revealed variability in the number and location of 5S rDNA clusters and confirmed a substantial conservation of the number and location of the 45S rDNA.

2008 ◽  
Vol 57 (1-6) ◽  
pp. 5-13 ◽  
Author(s):  
P. Chokchaichamnankit ◽  
K. Anamthawat-Jónsson ◽  
W. Chulalaksananukul

Abstract Fifteen species of Fagaceae from Chiang Mai province, northern Thailand, were investigated: eight Castanopsis, four Lithocarpus and three Quercus species. The species were generally diploid with the chromosome number 2n = 24, and the basic number x =12 was confirmed in some species with meiosis. One tree belonging to Q. lenticellatus had 2n = 14. Chromosomal mapping of the highly repetitive 18S-25S and 5S ribosomal genes by fluorescence in situ hybridisation (FISH) was performed. Most species (from all three genera) showed four 18S-25S rDNA sites (two pairs: one subterminal major and one paracentromeric/intercalary minor loci) and two 5S rDNA sites (one pair: paracentromeric locus). Quercus kerrii also had two pairs of 18S-25S rDNA sites, but both were subterminal major loci. Two species, C. argentea and Q. brandisianus, only had one pair of 18S-25S rDNA sites. Two species, C. calathiformis and L. vestitus, showed an odd number of (unpaired) sites, and this indicated hybrid origin and/or polyploidy. Polyploid cells were detected in these species. The ribosomal gene maps based on both sequences together were genus-specific. In Castanopsis, the 18S-25S and the 5S genes were localized on three different chromosome pairs, and comprised species-specific maps. On the other hand, the ribosomal genes in Lithocarpus and Quercus were found only on two chromosome pairs, because one of the two 18S-25S rDNA loci was localized on the same chromosome as the 5S rDNA locus. The FISH markers may be used to clarify discrepancies arising from morphological assessments.


Genome ◽  
2001 ◽  
Vol 44 (5) ◽  
pp. 911-918 ◽  
Author(s):  
Ki-Byung Lim ◽  
Jannie Wennekes ◽  
J Hans de Jong ◽  
Evert Jacobsen ◽  
Jaap M van Tuyl

Detailed karyotypes of Lilium longiflorum and L. rubellum were constructed on the basis of chromosome arm lengths, C-banding, AgNO3 staining, and PI-DAPI banding, together with fluorescence in situ hybridisation (FISH) with the 5S and 45S rDNA sequences as probes. The C-banding patterns that were obtained with the standard BSG technique revealed only few minor bands on heterologous positions of the L. longiflorum and L. rubellum chromosomes. FISH of the 5S and 45S rDNA probes on L. longiflorum metaphase complements showed overlapping signals at proximal positions of the short arms of chromosomes 4 and 7, a single 5S rDNA signal on the secondary constriction of chromosome 3, and one 45S rDNA signal adjacent to the 5S rDNA signal on the subdistal part of the long arm of chromosome 3. In L. rubellum, we observed co-localisation of the 5S and 45S rDNA sequences on the short arm of chromosomes 2 and 4 and on the long arms of chromosomes 2 and 3, and two adjacent bands on chromosome 12. Silver staining (Ag-NOR) of the nucleoli and NORs in L. longiflorum and L. rubellum yielded a highly variable number of signals in interphase nuclei and only a few faint silver deposits on the NORs of mitotic metaphase chromosomes. In preparations stained with PI and DAPI, we observed both red- and blue-fluorescing bands at different positions on the L. longiflorum and L. rubellum chromosomes. The red-fluorescing or so-called reverse PI-DAPI bands always coincided with rDNA sites, whereas the blue-fluorescing DAPI bands corresponded to C-bands. Based on these techniques, we could identify most of chromosomes of the L. longiflorum and L. rubellum karyotypes.Key words: fluorescence in situ hybridisation, FISH, 5S rDNA, 45S rDNA, C-banding, reverse PI-DAPI banding.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 250
Author(s):  
Rebecca E O’Connor ◽  
Lucas G Kiazim ◽  
Claudia C Rathje ◽  
Rebecca L Jennings ◽  
Darren K Griffin

With demand rising, pigs are the world’s leading source of meat protein; however significant economic loss and environmental damage can be incurred if boars used for artificial insemination (AI) are hypoprolific (sub-fertile). Growing evidence suggests that semen analysis is an unreliable tool for diagnosing hypoprolificacy, with litter size and farrowing rate being more applicable. Once such data are available, however, any affected boar will have been in service for some time, with significant financial and environmental losses incurred. Reciprocal translocations (RTs) are the leading cause of porcine hypoprolificacy, reportedly present in 0.47% of AI boars. Traditional standard karyotyping, however, relies on animal specific expertise and does not detect more subtle (cryptic) translocations. Previously, we reported development of a multiple hybridisation fluorescence in situ hybridisation (FISH) strategy; here, we report on its use in 1641 AI boars. A total of 15 different RTs were identified in 69 boars, with four further animals XX/XY chimeric. Therefore, 4.5% had a chromosome abnormality (4.2% with an RT), a 0.88% incidence. Revisiting cases with both karyotype and FISH information, we reanalysed captured images, asking whether the translocation was detectable by karyotyping alone. The results suggest that chromosome translocations in boars may be significantly under-reported, thereby highlighting the need for pre-emptive screening by this method before a boar enters a breeding programme.


2019 ◽  
Vol 67 (7) ◽  
pp. 521
Author(s):  
Magdalena Vaio ◽  
Cristina Mazzella ◽  
Marcelo Guerra ◽  
Pablo Speranza

The Dilatata group of Paspalum includes species and biotypes native to temperate South America. Among them, five sexual allotetraploids (x = 10) share the same IIJJ genome formula: P. urvillei Steud, P. dasypleurum Kunze ex Desv., P. dilatatum subsp. flavescens Roseng., B.R. Arrill. & Izag., and two biotypes P. dilatatum Vacaria and P. dilatatum Virasoro. Previous studies suggested P. intermedium Munro ex Morong & Britton and P. juergensii Hack. or related species as their putative progenitors and donors of the I and J genome, respectively, and pointed to a narrow genetic base for their maternal origin. It has not yet been established whether the various members of the Dilatata group are the result of a single or of multiple allopolyploid formations. Here, we aimed to study the evolutionary dynamics of rRNA genes after allopolyploidisation in the Dilatata group of Paspalum and shed some light into the genome restructuring of the tetraploid taxa with the same genome formula. We used double target fluorescence in situ hybridisation of 35S and 5S rDNA probes and sequenced the nrDNA internal transcribed spacer (ITS) region. A variable number of loci at the chromosome ends were observed for the 35S rDNA, from 2 to 6, suggesting gain and loss of sites. For the 5S rDNA, only one centromeric pair of signals was observed, indicating a remarkable loss after polyploidisation. All ITS sequences generated were near identical to the one found for P. intermedium. Although sequences showed a directional homogeneisation towards the putative paternal progenitor in all tetraploid species, the observed differences in the number and loss of rDNA sites suggest independent ongoing diploidisation processes in all taxa and genome restructuring following polyploidy.


The Lancet ◽  
1999 ◽  
Vol 353 (9148) ◽  
pp. 211-212 ◽  
Author(s):  
Bruce K Patterson ◽  
Mary Ann Czerniewski ◽  
John Pottage ◽  
Michelle Agnoli ◽  
Harold Kessler ◽  
...  

1993 ◽  
Vol 62 (2-3) ◽  
pp. 181-182 ◽  
Author(s):  
H.J. Eyre ◽  
P.A. Akkari ◽  
C. Meredith ◽  
S.D. Wilton ◽  
D.C. Callen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document