chromosome mapping
Recently Published Documents


TOTAL DOCUMENTS

369
(FIVE YEARS 20)

H-INDEX

42
(FIVE YEARS 3)

Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Zhenya Liu ◽  
Zirui Ren ◽  
Lunyi Yan ◽  
Feng Li

Members of the leucine-rich repeat (LRR) superfamily play critical roles in multiple biological processes. As the LRR unit sequence is highly variable, accurately predicting the number and location of LRR units in proteins is a highly challenging task in the field of bioinformatics. Existing methods still need to be improved, especially when it comes to similarity-based methods. We introduce our DeepLRR method based on a convolutional neural network (CNN) model and LRR features to predict the number and location of LRR units in proteins. We compared DeepLRR with six existing methods using a dataset containing 572 LRR proteins and it outperformed all of them when it comes to overall F1 score. In addition, DeepLRR has integrated identifying plant disease-resistance proteins (NLR, LRR-RLK, LRR-RLP) and non-canonical domains. With DeepLRR, 223, 191 and 183 LRR-RLK genes in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa ssp. Japonica) and tomato (Solanum lycopersicum) genomes were re-annotated, respectively. Chromosome mapping and gene cluster analysis revealed that 24.2% (54/223), 29.8% (57/191) and 16.9% (31/183) of LRR-RLK genes formed gene cluster structures in Arabidopsis, rice and tomato, respectively. Finally, we explored the evolutionary relationship and domain composition of LRR-RLK genes in each plant and distributions of known receptor and co-receptor pairs. This provides a new perspective for the identification of potential receptors and co-receptors.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2650
Author(s):  
Rafael Kretschmer ◽  
Ismael Franz ◽  
Marcelo Santos de Souza ◽  
Analía Del Valle Garnero ◽  
Ricardo José Gunski ◽  
...  

The phylogenetic position and taxonomic status of Rhynchocyclidae (Aves: Passeriformes) have been the subject of debate since their first description. In most models, Rhynchocyclidae represents a subfamily-level taxon placed within the Tyrant Flycatchers (Tyrannidae). Considering that this classification does not include cytotaxonomic characters, we tested the hypothesis that the chromosome organization of Rhynchocyclidae members differs from that of Tyrannidae. Hence, we selected two species, Tolmomyias sulphurescens, and Pitangus sulphuratus, representing Rhynchocyclidae and Tyrannidae, respectively. Results revealed a diploid number (2n) of 60 in T. sulphurescens and 2n = 80 in P. sulphuratus, indicating significant chromosomal differences. Chromosome mapping of Gallus gallus (GGA) and Taeniopygia guttata bacterial artificial chromosome (BAC) corresponding to chromosomes GGA1-28 (except 16) revealed that the genome evolution of T. sulphurescens involved extensive chromosome fusions of macrochromosomes and microchromosomes. On the other hand, P. sulphuratus retained the ancestral pattern of organization of macrochromosomes (except the centric fission involving GGA1) and microchromosomes. In conclusion, comparing our results with previous studies in Tyrant Flycatchers and allies indicates that P. sulphuratus has similar karyotypes to other Tyrannidae members. However, T. sulphurescens does not resemble the Tyrannidae family, reinforcing family status to the clade named Rhynchocyclidae.


2021 ◽  
Vol 22 (11) ◽  
pp. 5942
Author(s):  
Xiaoli Zhang ◽  
Xiaoqing Gong ◽  
Danyang Li ◽  
Hong Yue ◽  
Ying Qin ◽  
...  

Plant proline-rich proteins (PRPs) are cell wall proteins that occur in the plant kingdom and are involved in plant development and stress response. In this study, 9 PRP genes were identified from the apple genome and a comprehensive analysis of the PRP family was conducted, including gene structures, phylogenetic analysis, chromosome mapping, and so on. The expression of MdPRPs varied among tissues and in response to different types of stresses. MdPRP4 and MdPRP7 were induced by five detected stress treatments, including heat, drought, abscisic acid, cold, and salt; the expression patterns of the others varied under different types of stress. Subcellular localization showed that MdPRPs mainly functioned in the cytoplasm, except for MdPRP1 and MdPRP5, which also functioned in the nucleus. When MdPRP6 was overexpressed in tobacco, the transgenic plants showed higher tolerance to high temperature (48 °C) compared with wild-type (WT) plants. The transgenic plants showed milder wilting, a lower accumulation of electrolyte leakage, MDA and ROS, and a higher level of chlorophyll and SOD and POD activity, indicating that MdPRP6 may be an important gene in apples for heat stress tolerance. Overall, this study suggested that MdPRPs are critically important for the ability of apple responses to stresses.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1105
Author(s):  
Alexandra V. Amosova ◽  
Lilit Ghukasyan ◽  
Olga Yu. Yurkevich ◽  
Nadezhda L. Bolsheva ◽  
Tatiana E. Samatadze ◽  
...  

The genus Deschampsia P. Beauv. (Poaceae) involves a group of widespread polymorphic species, and many of them are highly tolerant to stressful environmental conditions. Genome diversity and chromosomal phylogeny within the genus are still insufficiently studied. Satellite DNAs, including CON/COM families, are the main components of the plant repeatome, which contribute to chromosome organization. For the first time, using PCR-based (Polymerase Chain Reaction) techniques and sequential BLAST (Basic Local Alignment Search Tool) and MSA (Multiple Sequence Alignment) analyses, we identified and classified CON/COM repeats in genomes of eleven Deschampsia accessions and three accessions from related genera. High homology of CON/COM sequences were revealed in the studied species though differences in single-nucleotide alteration profiles detected in homologous CON/COM regions indicated that they tended to diverge independently. The performed chromosome mapping of 45S rDNA, 5S rDNA, and CON/COM repeats in six Deschampsia species demonstrated interspecific variability in localization of these cytogenetic markers and facilitated the identification of different chromosomal rearrangements. Based on the obtained data, the studied Deschampsia species were distinguished into karyological groups, and MSA-based schematic trees were built, which could clarify the relationships within the genus. Our findings can be useful for further genetic and phylogenetic studies.


2021 ◽  
Author(s):  
Maelin da Silva ◽  
Daniele Aparecida Matoso ◽  
Vladimir Pavan Margarido ◽  
Eliana Feldberg ◽  
Roberto Ferreira Artoni

Fishes of the genus Gymnotus have been suggested as a good model for biogeographic studies in the South American continent. In relation to heterochromatin, species of this genus have blocks preferably distributed in the centromeric region. The content of these regions has been shown to be variable, with description of transposable elements, pseudogenes of 5S rDNA and satellite sequences. In G. carapo Clade, although geographically separated, species with 2n = 54 chromosomes share the distribution of many 5S rDNA sites, a unique case within the genus. Here, repetitive DNA sequences from G. sylvius (2n = 40) and G. paraguensis (2n = 54) were isolated and mapped to understand their constitution. The chromosome mapping by FISH showed an exclusive association in the centromeres of all chromosomes. However, the cross-FISH did not show positive signs of interspecific hybridization, indicating high levels of heterochromatic sequence specificity. In addition, COI-1 sequences were analyzed in some species of Gymnotus, which revealed a close relationship between species of clade 2n = 54, which have multiple 5S rDNA sites. Possibly, the insertion of retroelements or pseudogenization and dispersion of this sequence occurred before the geographic dispersion of the ancestor of this clade from the Amazon region to the hydrographic systems of Paraná-Paraguay, a synapomorphy for the group.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 826
Author(s):  
Rafael Kretschmer ◽  
Marcelo Santos de Souza ◽  
Ivanete de Oliveira Furo ◽  
Michael N. Romanov ◽  
Ricardo José Gunski ◽  
...  

Interchromosomal rearrangements involving microchromosomes are rare events in birds. To date, they have been found mostly in Psittaciformes, Falconiformes, and Cuculiformes, although only a few orders have been analyzed. Hence, cytogenomic studies focusing on microchromosomes in species belonging to different bird orders are essential to shed more light on the avian chromosome and karyotype evolution. Based on this, we performed a comparative chromosome mapping for chicken microchromosomes 10 to 28 using interspecies BAC-based FISH hybridization in five species, representing four Neoaves orders (Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes). Our results suggest that the ancestral microchromosomal syntenies are conserved in Pteroglossus inscriptus (Piciformes), Ramphastos tucanus tucanus (Piciformes), and Trogon surrucura surrucura (Trogoniformes). On the other hand, chromosome reorganization in Phalacrocorax brasilianus (Suliformes) and Hydropsalis torquata (Caprimulgiformes) included fusions involving both macro- and microchromosomes. Fissions in macrochromosomes were observed in P. brasilianus and H. torquata. Relevant hypothetical Neognathae and Neoaves ancestral karyotypes were reconstructed to trace these rearrangements. We found no interchromosomal rearrangement involving microchromosomes to be shared between avian orders where rearrangements were detected. Our findings suggest that convergent evolution involving microchromosomal change is a rare event in birds and may be appropriate in cytotaxonomic inferences in orders where these rearrangements occurred.


2021 ◽  
pp. 1-7
Author(s):  
Thiago Gazoni ◽  
Nathália S. Dorigon ◽  
Marcelo J. da Silva ◽  
Luiza R. Cholak ◽  
Célio F.B. Haddad ◽  
...  

Small nuclear RNA (snRNA) is a class of molecules involved in the processing of pre-mRNA and in regulatory cell processes. snRNAs are always associated with a set of specific proteins. The complexes are referred to as small nuclear ribonucleoproteins, and spliceosome U RNAs are their most common snRNA components. The repetitive sequences of U snDNAs have been cytogenetically mapped in several species of Arthropoda, fishes, and mammals; however, their distribution remains unknown in amphibians. Here, we show results of FISH mapping of U2 snDNA repetitive sequences in species of the amphibian genus <i>Leptodactylus</i> to reveal the distribution patterns of this sequence in their karyotypes. The probe hybridized in the metacentric chromosome pair 6 in <i>Leptodactylus fuscus</i>, <i>L. gracilis</i>, <i>L. latrans</i>, <i>L. chaquensis</i>, <i>L. petersii</i>, <i>L. podicipinus</i>, and <i>L. brevipes</i>. A different pattern was observed in <i>L. labyrinthicus</i> with hybridization signals in 4 chromosome pairs. The same localization of U2 gene sequences in most of the species analyzed suggests a relatively conserved pattern and a similarity of the chromosome 6 among these species of <i>Leptodactylus</i>.


Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1319
Author(s):  
Elisabetta Coluccia ◽  
Federica Deidda ◽  
Cinzia Lobina ◽  
Riccardo Melis ◽  
Cristina Porcu ◽  
...  

The Muraenidae is one of the largest and most complex anguilliform families. Despite their abundance and important ecological roles, morays are little studied, especially cytogenetically, and both their phylogenetic relationships and the taxonomy of their genera are controversial. With the aim of extending the karyology of this fish group, the chromosomal mapping of the 5S ribosomal gene family was performed on seven species belonging to the genera Muraena and Gymnothorax from both the Atlantic and Pacific oceans. Fluorescence in situ hybridisation (FISH) experiments were realized using species-specific 5S rDNA probes; in addition, two-colour FISH was performed to investigate the possible association with the 45S ribosomal gene family. Multiple 5S rDNA clusters, located either in species-specific or in possibly homoeologous chromosomes, were found. Either a syntenic or different chromosomal location of the two ribosomal genes was detected. Our results revealed variability in the number and location of 5S rDNA clusters and confirmed a substantial conservation of the number and location of the 45S rDNA.


Sign in / Sign up

Export Citation Format

Share Document