scholarly journals SNP in Potentially Defunct Tetrahydrocannabinolic Acid Synthase Is a Marker for Cannabigerolic Acid Dominance in Cannabis sativa L.

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 228
Author(s):  
Andrea R. Garfinkel ◽  
Matthew Otten ◽  
Seth Crawford

The regulation of cannabinoid synthesis in Cannabis sativa is of increasing research interest as restrictions around the globe loosen to allow the plant’s legal cultivation. Of the major cannabinoids, the regulation of cannabigerolic acid (CBGA) production is the least understood. The purpose of this study was to elucidate the inheritance of CBGA dominance in C. sativa and describe a marker related to this chemotype. We produced two crossing populations, one between a CBGA dominant cultivar and a tetrahydrocannabinolic acid (THCA) dominant cultivar, and one between a CBGA dominant cultivar and a cannabidiolic acid (CBDA) cultivar. Chemical and genotyping analyses confirmed that CBGA dominance is inherited as a single recessive gene, potentially governed by a non-functioning allelic variant of the THCA synthase. The “null” THCAS synthase contains a single nucleotide polymorphism (SNP) that may render the synthase unable to convert CBGA to THCA leading to the accumulation of CBGA. This SNP can be reliably used as a molecular marker for CBGA dominance in the selection and breeding of C. sativa.

2019 ◽  
Vol 70 (10) ◽  
pp. 827 ◽  
Author(s):  
H. B. Jiang ◽  
N. Wang ◽  
J. T. Jian ◽  
C. S. Wang ◽  
Y. Z. Xie

The yellow–green leaf mutant can be exploited in photosynthesis and plant development research. A Triticum aestivum mutant with the chlorina phenotype, here called B23, was produced by treatment with the chemical mutagen sodium azide. This B23 mutant showed significantly lower chlorophyll content than wild-type Saannong33, and its chloroplast structure was abnormal. All its yield-related traits, except for the number of spikes per plant, were also significantly decreased. Genetic analysis confirmed that the mutant phenotype was controlled by a recessive gene, here designated cn-A1. Using bulked segregant analysis and the wheat 660K single nucleotide polymorphism array, the cn-A1 gene was mapped to chromosome 7AL, and 11 polymorphic markers were developed. Further analysis showed that cn-A1 was located in a 1.1-cM genetic region flanked by Kompetitive allele specific PCR (KASP) markers 660K-7A12 and 660K-7A20, which corresponded to a physical interval of 3.48 Mb in T. aestivum cv. Chinese Spring chromosome 7AL containing 47 predicted genes with high confidence. These results are expected to accelerate the process of cloning the cn-A1 gene and facilitate understanding of the mechanisms underlying chlorophyll metabolism and chloroplast development in wheat.


Author(s):  
Dương Thanh Thủy ◽  
Taiichiro Ookawa

The sensory and functional properties of rice are predominantly associated with its amylose content. Granule-bound starch synthase (GBSS) encoded by the Waxy (Wx) gene determines the synthesis of amylose, while starch branching enzymes encoded by Sbe genes are involved in the formation of amylopectin. Some studies have demonstrated that Wx gene is the major controller of amylose content but there are one or more modifying genes affecting the amylose content. Three markers,  microsatellite, Single – nucleotide – polymorphism (G/T SNP) in Wx gene and Single – nucleotide – polymorphism (T/C SNP) in Sbe1 gene, were tested for their association with amylose content using sixty-nine  rice accessions from twenty countries. Of the three markers, two markers in Wx gene are significantly associated with amylose content. The combination of two markers in Wx gene (haplotypes) explained 83.8% of the variation in amylose content and discriminated the three market classes of glutinous, low, intermediate and high amylose content of rice from each other. And T/C SNP in Sbe1 locus was not a suitable marker for amylose content. Keywords: marker, amylose content, Waxy gene.


Sign in / Sign up

Export Citation Format

Share Document