scholarly journals miR-542-3p Contributes to the HK2-Mediated High Glycolytic Phenotype in Human Glioma Cells

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 633
Author(s):  
Junhyung Kim ◽  
Min Woo Park ◽  
Young Joon Park ◽  
Ju Won Ahn ◽  
Jeong Min Sim ◽  
...  

(1) Background: The elevation of glucose metabolism is linked to high-grade gliomas such as glioblastoma multiforme (GBM). The high glycolytic phenotype is associated with cellular proliferation and resistance to treatment with chemotherapeutic agents in GBM. MicroRNA-542-3p (miR-542-3p) has been implicated in several tumors including gliomas. However, the role of miR-542-3p in glucose metabolism in human gliomas remains unclear; (2) Methods: We measured the levels of cellular proliferation in human glioma cells. We measured the glycolytic activity in miR-542-3p knockdown and over-expressed human glioma cells. We measured the levels of miR-542-3p and HK2 in glioma tissues from patients with low- and high-grade gliomas using imaging analysis; (3) Results: We show that knockdown of miR-542-3p significantly suppressed cellular proliferation in human glioma cells. Knockdown of miR-542-3p suppressed HK2-induced glycolytic activity in human glioma cells. Consistently, over-expression of miR-542-3p increased HK2-induced glycolytic activity in human glioma cells. The levels of miR-542-3p and HK2 were significantly elevated in glioma tissues of patients with high-grade gliomas relative to that in low-grade gliomas. The elevation of HK2 levels in patients with high-grade gliomas were positively correlated with the high levels of miR-542-3p in GBM and low-grade gliomas (LGG) based on the datasets from the Cancer Genome Atlas (TCGA) database. Moreover, the high levels of miR-542-3p were associated with poor survival rate in the TCGA database; (4) Conclusions: miR-542-3p contributes to the HK2-mediated high glycolytic phenotype in human glioma cells.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi208-vi208
Author(s):  
Junhyung Kim ◽  
Min Woo Park ◽  
Ju Won Ahn ◽  
Jeong Min Sim ◽  
Suwan Kim ◽  
...  

Abstract BACKGROUND The elevation of glucose metabolism is linked to high-grade gliomas such as glioblastoma multiforme (GBM). The high glycolytic phenotype is associated with cellular proliferation and resistance to treatment with chemotherapeutic agents in GBM. MicroRNA-542-3p (miR-542-3p) has been implicated in several tumors including gliomas. However, the role of miR-542-3p in glucose metabolism in human gliomas remains unclear. METHODS We measured the levels of cellular proliferation in human glioma cells. We measured the glycolytic activity in miR-542-3p knockdown and over-expressed human glioma cells. We measured the levels of miR-542-3p and HK2 in glioma tissues from patients with low- and high-grade gliomas using imaging analysis. RESULTS We show that knockdown of miR-542-3p significantly suppressed cellular proliferation in human glioma cells. Knockdown of miR-542-3p suppressed HK2-induced glycolytic activity in human glioma cells. Consistently, over-expression of miR-542-3p increased HK2-induced glycolytic activity in human glioma cells. The levels of miR-542-3p and HK2 were significantly elevated in glioma tissues of patients with high-grade gliomas relative to that in low-grade gliomas. The elevation of HK2 levels in patients with high-grade gliomas were positively correlated with the high levels of miR-542-3p in GBM and low-grade gliomas (LGG) based on the datasets from the Cancer Genome Atlas (TCGA) database. Moreover, the high levels of miR-542-3p were associated with poor survival rate in the TCGA database. CONCLUSIONS miR-542-3p contributes to the HK2-mediated high glycolytic phenotype in human glioma cells.


2014 ◽  
Vol 17 (3) ◽  
pp. 407-418 ◽  
Author(s):  
Yuanyuan Chen ◽  
Delong Meng ◽  
Huibo Wang ◽  
Ruochuan Sun ◽  
Dongrui Wang ◽  
...  

2017 ◽  
Vol 44 ◽  
pp. 78-82 ◽  
Author(s):  
Masato Kobayashi ◽  
Asuka Mizutani ◽  
Kodai Nishi ◽  
Syuichi Nakajima ◽  
Naoto Shikano ◽  
...  

Author(s):  
Yoshihira Kimba ◽  
Tatsuya Abe ◽  
Jian Liang Wu ◽  
Ryo Inoue ◽  
Minoru Fukiki ◽  
...  

2007 ◽  
Vol 6 (1) ◽  
pp. 42 ◽  
Author(s):  
Pabbisetty Kumar ◽  
Anjali Shiras ◽  
Gowry Das ◽  
Jayashree C Jagtap ◽  
Vandna Prasad ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Haimei Cao ◽  
Xiang Xiao ◽  
Jun Hua ◽  
Guanglong Huang ◽  
Wenle He ◽  
...  

Objectives: The present study aimed to study whether combined inflow-based vascular-space-occupancy (iVASO) MR imaging (MRI) and diffusion-weighted imaging (DWI) improve the diagnostic accuracy in the preoperative grading of gliomas. Methods: Fifty-one patients with histopathologically confirmed diffuse gliomas underwent preoperative structural MRI, iVASO, and DWI. We performed 2 qualitative consensus reviews: (1) structural MR images alone and (2) structural MR images with iVASO and DWI. Relative arteriolar cerebral blood volume (rCBVa) and minimum apparent diffusion coefficient (mADC) were compared between low-grade and high-grade gliomas. Receiver operating characteristic (ROC) curve analysis was performed to compare the tumor grading efficiency of rCBVa, mADC, and the combination of the two parameters. Results: Two observers diagnosed accurate tumor grade in 40 of 51 (78.4%) patients in the first review and in 46 of 51 (90.2%) in the second review. Both rCBVa and mADC showed significant differences between low-grade and high-grade gliomas. ROC analysis gave a threshold value of 1.52 for rCBVa and 0.85 × 10−3 mm2/s for mADC to provide a sensitivity and specificity of 88.0 and 81.2% and 100.0 and 68.7%, respectively. The area under the ROC curve (AUC) was 0.87 and 0.85 for rCBVa and mADC, respectively. The combination of rCBVa and mADC values increased the AUC to 0.92. Conclusion: The combined application of iVASO and DWI may improve the diagnostic accuracy of glioma grading.


Sign in / Sign up

Export Citation Format

Share Document