scholarly journals Exploring Viral Diversity in a Gypsum Karst Lake Ecosystem Using Targeted Single-Cell Genomics

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 886
Author(s):  
Sigitas Šulčius ◽  
Gediminas Alzbutas ◽  
Viktorija Juknevičiūtė ◽  
Eugenijus Šimoliūnas ◽  
Petras Venckus ◽  
...  

Little is known about the diversity and distribution of viruses infecting green sulfur bacteria (GSB) thriving in euxinic (sulfuric and anoxic) habitats, including gypsum karst lake ecosystems. In this study, we used targeted cell sorting combined with single-cell sequencing to gain insights into the gene content and genomic potential of viruses infecting sulfur-oxidizing bacteria Chlorobium clathratiforme, obtained from water samples collected during summer stratification in gypsum karst Lake Kirkilai (Lithuania). In total, 82 viral contigs were bioinformatically identified in 62 single amplified genomes (SAGs) of C. clathratiforme. The majority of viral gene and protein sequences showed little to no similarity with phage sequences in public databases, uncovering the vast diversity of previously undescribed GSB viruses. We observed a high level of lysogenization in the C. clathratiforme population, as 87% SAGs contained intact prophages. Among the thirty identified auxiliary metabolic genes (AMGs), two, thiosulfate sulfurtransferase (TST) and thioredoxin-dependent phosphoadenosine phosphosulfate (PAPS) reductase (cysH), were found to be involved in the oxidation of inorganic sulfur compounds, suggesting that viruses can influence the metabolism and cycling of this essential element. Finally, the analysis of CRISPR spacers retrieved from the consensus C. clathratiforme genome imply persistent and active virus–host interactions for several putative phages prevalent among C. clathratiforme SAGs. Overall, this study provides a glimpse into the diversity of phages associated with naturally occurring and highly abundant sulfur-oxidizing bacteria.

1997 ◽  
Vol 35 (7) ◽  
pp. 187-195 ◽  
Author(s):  
Binle Lin ◽  
K. Futono ◽  
A. Yokoi ◽  
M. Hosomi ◽  
A. Murakami

Establishing economic treatment technology for safe disposal of photo-processing waste (PW) has most recently become an urgent environmental concern. This paper describes a new biological treatment process for PW using sulfur-oxidizing bacteria (SOB) in conjunction with activated carbon (AC). Batch-type acclimation and adsorption experiments using SOB/PAC, SOB/PNAC, and SOB reactor type systems demonstrated that AC effectively adsorbs the toxic/refractory compounds which inhibit thiosulfate oxidization of SOB in PW. Thus, to further clarify the effect of AC, we performed a long-term (≈ 160 d) continuous-treatment experiment on 4- to 8-times dilution of PW using a SOB/GAC system which simulated a typical wastewater treatment system based on an aerobic activated sludge process that primarily uses acclimated SOB. The thiosulfate load and hydraulic retention time (HRT) were fixed during treatment such that they ranged from 0.8-3.7 kg S2O32-/l/d and 7.7-1.9 d, respectively. As expected, continuous treatment led to breakthrough of the adsorption effect of GAC. Renewing the GAC and continuing treatment for about 10 d demonstrated good treatment effectiveness.


2021 ◽  
Author(s):  
Dalton J. Leprich ◽  
Beverly E. Flood ◽  
Peter R. Schroedl ◽  
Elizabeth Ricci ◽  
Jeffery J. Marlow ◽  
...  

AbstractCarbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.


Author(s):  
Jianxing Sun ◽  
Wenxian Liu ◽  
Ruichang Tang ◽  
Haina Cheng ◽  
Ronghui Liu ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 131599
Author(s):  
Ebenezer Ashun ◽  
Umair Ali Toor ◽  
Hyuck Soo Kim ◽  
Kwon-Rae Kim ◽  
Se Jin Park ◽  
...  

2016 ◽  
Vol 104 ◽  
pp. 507-519 ◽  
Author(s):  
Weiming Yang ◽  
Hui Lu ◽  
Samir K. Khanal ◽  
Qing Zhao ◽  
Liao Meng ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Wang ◽  
Qianqian Qi

In the shallow lake ecosystems, the recovery of the aquatic macrophytes and the increase in the water transparency have been the main contents of the ecological restoration. Using the shallow lake ecological degradation and restoration model, CNOP method is adopted to discuss the instability and sensitivity of the ecosystem to the finite-amplitude perturbations related to the initial condition and the parameter condition. Results show that the linearly stable clear (turbid) water states can be nonlinearly unstable with the finite-amplitude perturbations, which represent the nature factors and the human activities such as the excessive harvest of the macrophytes and the sediment resuspension caused by artificially dynamic actions on the ecosystems. The results also support the viewpoint of Scheffer et al., whose emphasis is that the facilitation interactions between the submerged macrophytes and the water transparency are the main trigger for an occasional shift from a turbid to a clear state. Also, by the comparison with CNOP-I, CNOP-P, CNOP, and (CNOP-I, CNOP-P), results demonstrate that CNOP, which is not a simple combination of CNOP-I and CNOP-P, could induce the shallow lake ecosystem larger departure from the same ground state rather than CNOP-I, CNOP-P, and (CNOP-I, CNOP-P).


Sign in / Sign up

Export Citation Format

Share Document