Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor

2016 ◽  
Vol 8 (4) ◽  
pp. 452-460 ◽  
Author(s):  
William D. Orsi ◽  
Bo Barker Jørgensen ◽  
Jennifer F. Biddle
2012 ◽  
Vol 57 (11) ◽  
pp. 1311-1319 ◽  
Author(s):  
Lei Jiang ◽  
ChunFang Cai ◽  
YongDong Zhang ◽  
ShengYi Mao ◽  
YongGe Sun ◽  
...  

2019 ◽  
Vol 75 (3) ◽  
pp. 71-82
Author(s):  
Anna Popkova ◽  
Svetlana Mazina

Investigation presents the assessment of species composition and structure of microbiota communities in the Otap Head Cave. Species were identified using standard approaches and cultivation methods. The abundance of algae and cyanobacteria was estimated applying 5-point Brown- Blank scale. Biodiversity of biofouling communities was revealed. Cyanobacteria were the dominant group of phototrophs colonizing cave wall and water streams. The most frequently documented cyanobacteria were species from genera Chroococcus, Gloeocapsa, Oscillatoria, Phormidium. Among micromycetes prevailed Ascomycetes (genera Aspergillus, Penicillum, Trichoderma). The development of so-called lamp flora around artificial lights was not observed. The presence of sulfate-reducing and sulfur-oxidizing bacteria was detected. It can indicate that a small circulation of sulfur occurs in cave at the present time.


1997 ◽  
Vol 35 (7) ◽  
pp. 187-195 ◽  
Author(s):  
Binle Lin ◽  
K. Futono ◽  
A. Yokoi ◽  
M. Hosomi ◽  
A. Murakami

Establishing economic treatment technology for safe disposal of photo-processing waste (PW) has most recently become an urgent environmental concern. This paper describes a new biological treatment process for PW using sulfur-oxidizing bacteria (SOB) in conjunction with activated carbon (AC). Batch-type acclimation and adsorption experiments using SOB/PAC, SOB/PNAC, and SOB reactor type systems demonstrated that AC effectively adsorbs the toxic/refractory compounds which inhibit thiosulfate oxidization of SOB in PW. Thus, to further clarify the effect of AC, we performed a long-term (≈ 160 d) continuous-treatment experiment on 4- to 8-times dilution of PW using a SOB/GAC system which simulated a typical wastewater treatment system based on an aerobic activated sludge process that primarily uses acclimated SOB. The thiosulfate load and hydraulic retention time (HRT) were fixed during treatment such that they ranged from 0.8-3.7 kg S2O32-/l/d and 7.7-1.9 d, respectively. As expected, continuous treatment led to breakthrough of the adsorption effect of GAC. Renewing the GAC and continuing treatment for about 10 d demonstrated good treatment effectiveness.


2021 ◽  
Author(s):  
Dalton J. Leprich ◽  
Beverly E. Flood ◽  
Peter R. Schroedl ◽  
Elizabeth Ricci ◽  
Jeffery J. Marlow ◽  
...  

AbstractCarbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.


Author(s):  
Jianxing Sun ◽  
Wenxian Liu ◽  
Ruichang Tang ◽  
Haina Cheng ◽  
Ronghui Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document