scholarly journals Transposons-Based Clonal Diversity in Trematode Involves Parts of CR1 (LINE) in Eu- and Heterochromatin

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1129
Author(s):  
Anna Solovyeva ◽  
Ivan Levakin ◽  
Evgeny Zorin ◽  
Leonid Adonin ◽  
Yuri Khotimchenko ◽  
...  

Trematode parthenitae have long been believed to form clonal populations, but clonal diversity has been discovered in this asexual stage of the lifecycle. Clonal polymorphism in the model species Himasthla elongata has been previously described, but the source of this phenomenon remains unknown. In this work, we traced cercarial clonal diversity using a simplified amplified fragment length polymorphism (SAFLP) method and characterised the nature of fragments in diverse electrophoretic bands. The repetitive elements were identified in both the primary sequence of the H. elongata genome and in the transcriptome data. Long-interspersed nuclear elements (LINEs) and long terminal repeat retrotransposons (LTRs) were found to represent an overwhelming majority of the genome and the transposon transcripts. Most sequenced fragments from SAFLP pattern contained the reverse transcriptase (RT, ORF2) domains of LINEs, and only a few sequences belonged to ORFs of LTRs and ORF1 of LINEs. A fragment corresponding to a CR1-like (LINE) spacer region was discovered and named CR1-renegade (CR1-rng). In addition to RT-containing CR1 transcripts, we found short CR1-rng transcripts in the redia transcriptome and short contigs in the mobilome. Probes against CR1-RT and CR1-rng presented strikingly different pictures in FISH mapping, despite both being fragments of CR1. In silico data and Southern blotting indicated that CR1-rng is not tandemly organised. CR1 involvement in clonal diversity is discussed.

2005 ◽  
Vol 17 (4) ◽  
pp. 311-315 ◽  
Author(s):  
Laura A. Kiehnbaum ◽  
Alongkorn Amonsin ◽  
Scott J. Wells ◽  
Vivek Kapur

The molecular ecology of Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease, is not well understood in the United States. In this study, a DNA fingerprinting method, amplified fragment length polymorphism (AFLP), was used to subtype the pathogen and assess the clonal diversity of MAP in Minnesota dairy herds. Fifty-six fecal culture test–positive isolates from various Minnesota counties and culture dates were analyzed in this study. The AFLP identified 11 profiles with 50% of isolates representing 1 major profile. The major profile was distributed across the state. The genetic diversity of bovine MAP clones in Minnesota based on AFLP analysis of this data appears to be relatively low.


Sign in / Sign up

Export Citation Format

Share Document