scholarly journals Assessing Ecosystem Services of Atmospheric Calcium and Magnesium Deposition for Potential Soil Inorganic Carbon Sequestration

Geosciences ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 200 ◽  
Author(s):  
Elena A. Mikhailova ◽  
Hamdi A. Zurqani ◽  
Christopher J. Post ◽  
Mark A. Schlautman

Many soil regulating ecosystem services (ES) are linked to Earth’s atmosphere, but associated monetary values often are unknown or difficult to quantify. Atmospheric deposition of calcium (Ca2+) and magnesium (Mg2+) are abiotic flows (wet, dry, and total) from the atmosphere to land surfaces, which potentially can become available to sequester carbon (C) as soil inorganic carbon (SIC). However, these processes typically have not been included in economic valuations of ecosystem services. The primary objective of this study was to demonstrate an approach for valuing non-constrained potential SIC sequestration from atmospheric Ca2+ and Mg2+ deposition based on the concept of the avoided social cost of carbon dioxide emissions (SC-CO2). Maximum monetary values associated with the non-constrained potential SIC sequestration were compiled for the contiguous United States (U.S.) by soil order, land resource region (LRR), state, and region using available deposition data from the National Atmospheric Deposition Program (NRSP-3). For the entire contiguous U.S., an average annual monetary value for the non-constrained potential SIC sequestration due to atmospheric Ca2+ and Mg2+ deposition was $135M (i.e., $135 million U.S. dollars, where M = million = 106). Mollisols, Alfisols, and Entisols were soil orders with the highest average annual monetary values for non-constrained potential SIC sequestration. When normalized by land area, however, Vertisols had the highest average annual monetary values followed by Alfisols and Mollisols for non-constrained potential SIC sequestration. From a more agricultural perspective, the LRRs with the highest average annual monetary values for non-constrained potential SIC sequestration were the Western Range and Irrigated Region (D), the Central Feed Grains and Livestock Region (M), and the Central Great Plains Winter Wheat and Range Region (H). When normalized by area, the LRRS with the highest average annual monetary values were the Southwest Plateaus and Plains Range and Cotton Region (I) and the Florida Subtropical Fruit, Truck Crop and Range Region (U). Among the U.S. states, the highest average annual monetary values for non-constrained potential SIC sequestration were Texas, Kansas, and New Mexico, but when normalized by area the highest values by state were Kansas, Iowa, and Texas. Geographical regions in the contiguous U.S. with the highest average annual monetary values for non-constrained potential SIC sequestration were the South Central, Midwest, and West; when normalized by area, the highest values by region were South Central, Midwest, and Northern Plains. Constraints on maximum monetary values, based on physical, chemical, biological, economic, social, and political limitations, need to be considered and quantified to obtain more precise and accurate accounting of the ES associated with SIC sequestration due to atmospheric Ca2+ and Mg2+ deposition.

Land ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 149 ◽  
Author(s):  
Garth R. Groshans ◽  
Elena A. Mikhailova ◽  
Christopher J. Post ◽  
Mark A. Schlautman ◽  
Hamdi A. Zurqani ◽  
...  

Soil databases are very important for assessing ecosystem services at different administrative levels (e.g., state, region etc.). Soil databases provide information about numerous soil properties, including soil inorganic carbon (SIC), which is a naturally occurring liming material that regulates soil pH and performs other key functions related to all four recognized ecosystem services (e.g., provisioning, regulating, cultural and supporting services). However, the ecosystem services value, or “true value,” of SIC is not recognized in the current land market. In this case, a negative externality arises because SIC with a positive value has zero market price, resulting in the market failure and the inefficient use of land. One potential method to assess the value of SIC is by determining its replacement cost based on the price of commercial limestone that would be required to amend soil. The objective of this study is to assess SIC replacement cost value in the contiguous United States (U.S.) by depth (0–20, 20–100, 100–200 cm) and considering different spatial aggregation levels (i.e., state, region, land resource region (LRR) using the State Soil Geographic (STATSGO) soil database. A replacement cost value of SIC was determined based on an average price of limestone in 2014 ($10.42 per U.S. ton). Within the contiguous U.S., the total replacement cost value of SIC in the upper two meters of soil is between $2.16T (i.e., 2.16 trillion U.S. dollars, where T = trillion = 1012) and $8.97T. States with the highest midpoint total value of SIC were: (1) Texas ($1.84T), (2) New Mexico ($355B, that is, 355 billion U.S. dollars, where B = billion = 109) and (3) Montana ($325B). When normalized by area, the states with the highest midpoint SIC values were: (1) Texas ($2.78 m−2), (2) Utah ($1.72 m−2) and (3) Minnesota ($1.35 m−2). The highest ranked regions for total SIC value were: (1) South Central ($1.95T), (2) West ($1.23T) and (3) Northern Plains ($1.01T), while the highest ranked regions based on area-normalized SIC value were: (1) South Central ($1.80 m−2), (2) Midwest ($0.82 m−2) and (3) West ($0.63 m−2). For land resource regions (LRR), the rankings were: (1) Western Range and Irrigated Region ($1.10T), (2) Central Great Plains Winter Wheat and Range Region ($926B) and (3) Central Feed Grains and Livestock Region ($635B) based on total SIC value, while the LRR rankings based on area-normalized SIC value were: (1) Southwest Plateaus and Plains Range and Cotton Region ($3.33 m−2), (2) Southwestern Prairies Cotton and Forage Region ($2.83 m−2) and (3) Central Great Plains Winter Wheat and Range Region ($1.59 m−2). Most of the SIC is located within the 100–200 cm depth interval with a midpoint replacement cost value of $2.49T and an area-normalized value of $0.34 m−2. Results from this study provide a link between science-based estimates (e.g., soil order) of SIC replacement costs within the administrative boundaries (e.g., state, region etc.).


2019 ◽  
Vol 186 ◽  
pp. 36-41 ◽  
Author(s):  
Xinliang Dong ◽  
Bhupinder Pal Singh ◽  
Guitong Li ◽  
Qimei Lin ◽  
Xiaorong Zhao

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Sihan Wang ◽  
Weiwei Lu ◽  
Fangchao Zhang

Afforestation is a strategy to protect croplands and to sequestrate carbon in coastal areas. In addition, inorganic carbon is a considerable constitute of the coastal soil carbon pool. However, the vertical distribution and controlling factors of soil inorganic carbon (SIC) in plantations of coastal areas have been rarely studied. We analyzed the SIC content as well as physiochemical properties along soil profiles (0–100 cm) in young (YP) and mature (MP) poplar plantations in coastal eastern China. The soil profile was divided into six layers (0–10, 11–20, 21–40, 41–60, 61–80 and 81–100 cm) and a total of 36 soil samples were formed. The SIC content first increased from 0–10 cm (0.74%) to 11–20 cm (0.92%) and then fluctuated in the YP. In contrast, the SIC content increased with increasing soil depth until 40 cm and then leveled off, and the minimum and maximum appeared at 0–10 cm (0.54%) and 81–100 cm (0.98%) respectively in the MP. The soil inorganic carbon density was 12.05 and 12.93 kg m−2 within 0–100 cm in the YP and MP, respectively. Contrary to SIC, soil organic carbon (SOC) first decreased then levelled off within the soil profiles. Compared with the YP, the SIC content decreased 27.8% at 0–10 cm but increased 13.2% at 21–40 cm, meanwhile the SOC content in MP decreased 70.6% and 46.7% at 21–40 cm and 61–80 cm, respectively. The water-soluble Ca2+ and Mg2+ gradually decreased and increased, respectively within the soil profiles. The soil water-soluble Ca2+ increased 18.3% within 41–100 cm; however, the soil water-soluble Mg2+ decreased 32.7% within 21–100 cm in the MP when compared to the YP. Correlation analysis showed that SIC was negatively correlated with SOC, but positively correlated with soil pH and water-soluble Mg2+. Furthermore, structural equation modeling (SEM) indicated that SOC was the most important factor influencing the SIC content in the studied poplar plantations, indicating SOC sequestration promoted the dissolution of SIC. Therefore, our study highlights the trade-off between SIC and SOC in poplar plantations of coastal Eastern China.


Geoderma ◽  
2019 ◽  
Vol 353 ◽  
pp. 273-282 ◽  
Author(s):  
Hui An ◽  
Xiuzhi Wu ◽  
Yarou Zhang ◽  
Zhuangsheng Tang

CATENA ◽  
2014 ◽  
Vol 121 ◽  
pp. 22-30 ◽  
Author(s):  
Wen-Feng Tan ◽  
Rui Zhang ◽  
Hua Cao ◽  
Chuan-Qin Huang ◽  
Qin-Ke Yang ◽  
...  

2010 ◽  
Vol 24 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yuanhe Yang ◽  
Jingyun Fang ◽  
Chengjun Ji ◽  
Wenhong Ma ◽  
Shenshen Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document