scholarly journals Hydrological and Hydraulic Flood Hazard Modeling in Poorly Gauged Catchments: An Analysis in Northern Italy

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 149
Author(s):  
Francesca Aureli ◽  
Paolo Mignosa ◽  
Federico Prost ◽  
Susanna Dazzi

Flood hazard is assessed for a watershed with scarce hydrological data in the lower plain of Northern Italy, where the current defense system is inadequate to protect a highly populated urban area located at a river confluence and crossed by numerous bridges. An integrated approach is adopted. Firstly, to overcome the scarcity of data, a regional flood frequency analysis is performed to derive synthetic design hydrographs, with an original approach to obtain the flow reduction curve from recorded water stages. The hydrographs are then imposed as upstream boundary conditions for hydraulic modeling using the fully 2D shallow water model PARFLOOD with the recently proposed inclusion of bridges. High-resolution simulations of the potential flooding in the urban center and surrounding areas are, therefore, performed as a novel extensive application of a truly 2D framework for bridge modeling. Moreover, simulated flooded areas and water levels, with and without bridges, are compared to quantify the interference of the crossing structures and to assess the effectiveness of a structural measure for flood hazard reduction, i.e., bridge adaptation. This work shows how the use of an integrated hydrological–hydraulic approach can be useful for infrastructure design and civil protection purposes in a poorly gauged watershed.

Author(s):  
Leif M. Burge ◽  
Laurence Chaput-Desrochers ◽  
Richard Guthrie

Pipelines can be exposed at water crossings where rivers lower the channel bed. Channel bed scour may cause damage to linear infrastructure such as pipelines by exposing the pipe to the flow of water and sediment. Accurate estimation of depth of scour is therefore critical in limiting damage to infrastructure. Channel bed scour has three main components: (1) general scour, (2) bed degradation, and (3) pool depth. General scour is the temporary lowering of the channel bed during a flood event. Channel bed degradation is the systematic lowering of a channel bed over time. Pool depth is depth of pools below the general bed elevation and includes the relocation of pools that result from river dynamics. Channel degradation is assessed in the field using indicators of channel incision such as channel bed armoring and bank characteristics, through the analysis of long profiles and sediment transport modelling. Pool depth is assessed using long profiles and channel movement over time. The catastrophic nature of bed lowering due to general scour requires a different assessment. A design depth of cover is based on analysis of depth of scour for a given return period (eg. 100-years). There are three main steps to predict general scour: (1) regional flood frequency analysis, (2) estimation of hydraulic variables, and (3) scour depth modelling. Typically, four scour models are employed: Lacey (1930), Blench (1969), Neill (1973), and Zeller (1981), with the average or maximum value used for design depth. We provide herein case studies for potential scour for pipeline water crossings at the Little Smoky River and Joachim Creek, AB. Using the four models above, and an analysis of channel degradation and pool depth, the recommended minimum depth of cover of 0.75 m and 0.142 m, respectively, were prescribed. Variability between scour models is large. The general scour model results varied from 0.45 m and 0.75 m for the Little Smoky River and 0.16 m to 0.51 m for Joachim Creek. While these models are more than 30 years old and do not adequately account for factors such as sediment mobility, they nevertheless do provide usable answers and should form part of the usual toolbox in water crossing scour calculations.


2016 ◽  
Vol 20 (12) ◽  
pp. 4717-4729 ◽  
Author(s):  
Martin Durocher ◽  
Fateh Chebana ◽  
Taha B. M. J. Ouarda

Abstract. This study investigates the utilization of hydrological information in regional flood frequency analysis (RFFA) to enforce desired properties for a group of gauged stations. Neighbourhoods are particular types of regions that are centred on target locations. A challenge for using neighbourhoods in RFFA is that hydrological information is not available at target locations and cannot be completely replaced by the available physiographical information. Instead of using the available physiographic characteristics to define the centre of a target location, this study proposes to introduce estimates of reference hydrological variables to ensure a better homogeneity. These reference variables represent nonlinear relations with the site characteristics obtained by projection pursuit regression, a nonparametric regression method. The resulting neighbourhoods are investigated in combination with commonly used regional models: the index-flood model and regression-based models. The complete approach is illustrated in a real-world case study with gauged sites from the southern part of the province of Québec, Canada, and is compared with the traditional approaches such as region of influence and canonical correlation analysis. The evaluation focuses on the neighbourhood properties as well as prediction performances, with special attention devoted to problematic stations. Results show clear improvements in neighbourhood definitions and quantile estimates.


2012 ◽  
Vol 4 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Abhijit Bhuyan ◽  
Munindra Borah

The annual maximum discharge data of six gauging sites have been considered for L-moment based regional flood frequency analysis of Tripura, India. Homogeneity of the region has been tested based on heterogeneity measure (H) using method of L-moment. Based on heterogeneity measure it has been observed that the region consist of six gauging sites is homogeneous. Different probability distributions viz. Generalized extreme value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO), Pearson Type III (PE3) and Wakebay (WAK) have been considered for this investigation. PE3, GNO and GEV have been identified as the candidate distributions based on the L-moment ratio diagram and ZDIST -statistics criteria. Regional growth curves for three candidate distributions have been developed for gauged and ungauged catchments. Monte Carlo simulations technique has also been used to estimate accuracy of the estimated regional growth curves and quantiles. From simulation study it has been observed that PE3 distribution is the robust one.


Sign in / Sign up

Export Citation Format

Share Document