pool depth
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Marcel Gerstgrasser ◽  
Michael Cloots ◽  
Raphael Jakob ◽  
Josef Stirnimann ◽  
Konrad Wegener

Abstract Compared to reference parameters in the low power and scan velocity range, which lead to dense and crack-free CM247LC LPBF samples due to in-situ crack healing, high power, high scan velocities and increased laser beam diameters are investigated, to decrease the production time further. By keeping the maximum laser intensity from the reference and the laser power to scan velocity ratio constant, the intensity approach provides an initial estimation for the laser spot size regarding the measured Archimedean density and crack density in the high power and high scan velocity range. The investigated cracks are identified as re-melting cracks. Solidification or hot cracks are not observed, since the crack healing effect for those kinds of cracks still occurs. Furthermore, a melt pool depth range is discovered, where not only solidification cracks can be avoided, but also re-melting cracks, which are resulting from higher laser power inputs. This theory can be proven by further laser spot size optimization, where the melt pool depth comes closer to the mentioned range. The Archimedean density and crack density results, in case of the 600 W power parameter with 2400 mm/s scan velocity and a beam diameter of 164 µm, are close to the one obtained from the reference with 200 W, a scan velocity of 800 mm/s and a laser spot of 90 µm. With the intensity approach and laser beam diameter optimization, the production time can be reduced by 300%. Based on dimensional analysis, a model, which combines the samples density with the crack density through the melt pool depth, is presented. Six main and two additional process and laser parameters are taken into relation. The result from the model and the measured values from experiments are in good agreement. Additionally, the influence of the doubled layer thickness and an increased hatch distance by 50% with varying scan velocities on the Archimedean density and crack density is analysed.


Author(s):  
Andreas Wimmer ◽  
Fabian Hofstaetter ◽  
Constantin Jugert ◽  
Katrin Wudy ◽  
Michael F. Zaeh

AbstractThe limited access to materials for the Powder Bed Fusion of Metals using a Laser Beam (PBF-LB/M) is compensated by in situ alloying. Individual melt pool characteristics can be specifically influenced to improve the mechanical properties of the final part. However, conventional PBF-LB/M machines allow only limited access for detailed observation of the process zone and, in particular, the melt pool. This paper presents a methodology for systematically analyzing the melt pool in the cross section to determine the in situ variation of the melt pool depth. A custom PBF-LB/M test bench was devised to enable investigation of the process zone using high-speed infrared cameras. The image data were processed automatically using a dedicated algorithm. The methodology was applied to analyze the effect of additives on the melt pool stability. Stainless steel 316L powder was blended with the aluminum alloy AlSi10Mg by up to 20 wt.%. It was found that the blended powder significantly reduced the variation of the melt pool depth.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuxiang Li ◽  
Lili Tong ◽  
Xuewu Cao

During the process of containment depressurization venting, a high-temperature and high-pressure carrier gas with aerosol may be released into the spent fuel pool by a multihole injector. This aerosol in the carrier gas can be removed by pool scrubbing. A small-scale pool scrubbing facility was built to study the aerosol pool scrubbing phenomenon using a multihole injector. In this study, a gaseous mixture of nitrogen and steam is used to simulate a carrier gas, and insoluble solid particles of TiO2 are used to simulate aerosols in the carrier gas. Seven tests were performed to examine the dependence of the decontamination factor (DF) on the pool depth, particle diameter, and steam mass fraction. The results show that log(1/(1–Xm)) has a linear relationship with log(DF). DF varies exponentially with the pool depth, which has an influence on the retention of aerosols with a larger particle diameter. Particle diameters in the range of 0.2–0.52 μm have little effect on the DF. For a low-depth pool scrubbing, the steam condensation mechanism is dominant and the particle diameter does not have a significant effect on the DF. Moreover, the pool scrubbing model is discussed, and an empirical correlation is proposed to evaluate the DF of a pool.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 895
Author(s):  
Rasoul Daneshfaraz ◽  
Ehsan Aminvash ◽  
Amir Ghaderi ◽  
Alban Kuriqi ◽  
John Abraham

In irrigation and drainage channels, vertical drops are generally used to transfer water from a higher elevation to a lower level. Downstream of these structures, measures are taken to prevent the destruction of the channel bed by the flow and reduce its destructive kinetic energy. In this study, the effect of use steps and grid dissipators on hydraulic characteristics regarding flow pattern, relative downstream depth, relative pool depth, and energy dissipation of a vertical drop was investigated by numerical simulation following the symmetry law. Two relative step heights and two grid dissipator cell sizes were used. The hydraulic model describes fully coupled three-dimensional flow with axial symmetry. For the simulation, critical depths ranging from 0.24 to 0.5 were considered. Values of low relative depth obtained from the numerical results are in satisfactory agreement with the laboratory data. The simultaneous use of step and grid dissipators increases the relative energy dissipation compared to a simple vertical drop and a vertical drop equipped with steps. By using the grid dissipators and the steps downstream of the vertical drop, the relative pool depth increases. Changing the pore size of the grid dissipators does not affect the relative depth of the pool. The simultaneous use of steps and grid dissipators reduces the downstream Froude number of the vertical drop from 3.83–5.20 to 1.46–2.00.


2021 ◽  
Vol 11 (9) ◽  
pp. 4238
Author(s):  
Rasoul Daneshfaraz ◽  
Ehsan Aminvash ◽  
Amir Ghaderi ◽  
John Abraham ◽  
Mohammad Bagherzadeh

The present study investigated the application of support vector machine algorithms for predicting hydraulic parameters of a vertical drop equipped with horizontal screens. The study incorporated varying sizes of a rectangular channel. Horizontal screens, in addition to being able to dissipate the destructive energy of the flow, cause turbulence. The turbulence in turn supplies oxygen to the system through the promotion of air–water mixing. To achieve the objectives of the present study, 164 experiments were analyzed under the same experimental conditions using a support vector machine. The approach utilized dimensionless terms that included scenario 1: the relative energy consumption and scenario 2: the relative pool depth. The performance of the models was evaluated with statistical criteria (RMSE, R2 and KGE) and the best model was introduced for each of the parameters. RMSE is the root mean square error, R2 is the correlation coefficient and KGE is the Kling–Gupta criterion. The results of the support vector machine showed that for the first scenario, the third combination with R2 = 0.991, RMSE = 0.00565 and KGE = 0.998 for the training mode and R2 = 0.991, RMSE = 0.00489 and KGE = 0.991 for the testing mode were optimal. For the second scenario, the third combination with R2 = 0.988, RMSE = 0.0395 and KGE = 0.998 for the training mode and R2 = 0.988, RMSE = 0.0389 and KGE = 0.993 for the testing mode were selected. Finally, a sensitivity analysis was performed that showed that the yc/H and D/H parameters are the most effective parameters for predicting relative energy dissipation and relative pool depth, respectively.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 400
Author(s):  
Hao Zhou ◽  
Houming Zhou ◽  
Zhenyu Zhao ◽  
Kai Li ◽  
Jie Yin

As a novel polishing technology, polishing by laser beam radiation can be used to improve the sample surface finish without causing material losses. In order to study the effect of laser polishing on the surface morphology of S136D die steel, an L16(44) orthogonal experiment was designed to describe the variation trend of surface roughness with energy density. The two-dimensional transient model of laser polishing was established to simulate the evolution process of material surface morphology during laser polishing by combining numerical simulation with the experiment. The model uses a moving laser heat source to study the effects of capillary pressure and thermocapillary pressure in the laser polishing process. The experimental results show that the minimum roughness can be reduced to 0.764 μm, and the error between the actual molten pool depth and the simulated molten pool depth is 5.3%.


2020 ◽  
Vol 32 (11) ◽  
pp. 112104 ◽  
Author(s):  
Yeawan Lee ◽  
Seungwon Shin ◽  
Geunhyeok Choi ◽  
Hyejun Jeon ◽  
Youngdo Kim ◽  
...  

Author(s):  
Shinya Miyahara ◽  
Munemichi Kawaguchi ◽  
Hiroshi Seino

Abstract In a postulated accident of fuel pin failure of sodium cooled fast reactor, a fission product cesium will be released from the failed pin as an aerosol such as cesium iodide and/or cesium oxide together with a fission product noble gas such as xenon and krypton. As the result, the xenon and krypton released with cesium aerosol into the sodium coolant as bubbles have an influence on the removal of cesium aerosol by the sodium pool in a period of bubble rising to the pool surface. In this study, cesium aerosol removal behavior due to inertial deposition, sedimentation and diffusion from a noble gas bubble rising through liquid sodium pool was analyzed by constructing a computer program which deals with the expansion and the deformation of the bubble together with the aerosol absorption. In the analysis, initial bubble diameter, sodium pool depth and temperature, aerosol particle diameter and density, initial aerosol concentration in the bubble were changed as parameter, and the sensitivities of these parameters on decontamination factor (DF) of cesium aerosol were investigated. From the results, it was concluded that the initial bubble diameter was most sensitive parameter to the DF of cesium aerosol in the rising bubble due to the inertial deposition. It was found that the sodium pool depth, the aerosol particle diameter and density have also important effect on the DF of cesium aerosol, but the sodium temperature has a marginal effect on the DF. To meet these results, the experiments for the investigation of cesium aerosol absorption behavior from rising noble gas bubble through sodium pool are under planning to validate the results for the sensitivities of above-mentioned parameters on the DF of cesium aerosol in the analysis.


Sign in / Sign up

Export Citation Format

Share Document