scholarly journals Association between Blood Lead Levels and Delta-Aminolevulinic Acid Dehydratase in Pregnant Women

Author(s):  
Osmel La-Llave-León ◽  
Edna Méndez-Hernández ◽  
Francisco Castellanos-Juárez ◽  
Eloísa Esquivel-Rodríguez ◽  
Fernando Vázquez-Alaniz ◽  
...  
Author(s):  
Ambrose Mukisa ◽  
Denis M Kasozi ◽  
Claire Aguttu ◽  
Joseph Kyambadde

Rapid industrialization, urbanization, and population explosion in sub-Saharan Africa escalate environmental Lead levels with subsequent elevation of blood Lead levels in children. Nutrition status, age, and genetics govern one’s susceptibility to Lead toxicity. This study expounded this susceptibility by relating blood Lead levels, d-aminolevulinic acid dehydratase enzyme activity (ALAD), and genetic variations of proteins that code for ALAD enzyme in urban children of Uganda. Spectrophotometric analysis for blood Lead (BL), hemoglobin levels, and determination d-levels aminolevulinic acid dehydratase enzyme activity of the blood samples from 198 children were performed prior to a polymerase chain reaction and restriction fragment length digestion for ALAD polymorphism was done. Up to 99.5% of samples coded for the ALAD1 allele whereas 0.05% coded for ALAD2. Genotypes ALAD2-2 members had elevated BLL (mean 14.1 µg/dL) and reduced ALAD enzyme activity compared to others. This, therefore, implies that the majority of children hoard BL which may affect them later in life.


Author(s):  
Eléna Coiplet ◽  
Marine Freuchet ◽  
Claire Sunyach ◽  
Julien Mancini ◽  
Jeanne Perrin ◽  
...  

Lead readily crosses the placenta and displays adverse effects on birth outcomes and neurodevelopment. Systematic identification of the risk of exposure during pregnancy is essential but rarely performed, probably due to hospital staff’s workload and their lack of awareness. We aimed to evaluate the relevance of a questionnaire to screen pregnant women for lead exposure. A cross-sectional, multicentre study was carried out on a population of 792 pregnant women from February 2018 to May 2020. A total of 596 women had a blood lead test: 68.5% had blood lead levels below 10 μg/L. The estimated prevalence above 25 µg/L was 4% (95% confidence interval (CI) [2.6–5.9]) and 1.3% had levels above 50 µg/L (95% CI [0.6–2.6]). Multivariate analysis showed that three risk factors significantly increased the probability of blood lead levels above 25 µg/L: the use of traditional cosmetics (adjusted odds ratio [aOR]: 3.90; 95% CI [1.65–9.21]; p = 0.002), degraded old housing (aOR: 2.67; 95% CI [1.19–6.038]; p = 0.018), and (marginally) eating bread more than twice a day (aOR: 2.40; 95% CI [0.96–6.11]; p = 0.060). Our study reveals that a three-question tool can be used to quickly screen for the risk of lead exposure in our population and to trigger lead blood tests and special vigilance during pregnancy follow-up.


Sign in / Sign up

Export Citation Format

Share Document