scholarly journals SWAT Modeling of Non-Point Source Pollution in Depression-Dominated Basins under Varying Hydroclimatic Conditions

Author(s):  
Mohsen Tahmasebi Nasab ◽  
Kendall Grimm ◽  
Mohammad Bazrkar ◽  
Lan Zeng ◽  
Afshin Shabani ◽  
...  

Non-point source (NPS) pollution from agricultural lands is the leading cause of various water quality problems across the United States. Particularly, surface depressions often alter the releasing patterns of NPS pollutants into the environment. However, most commonly-used hydrologic models may not be applicable to such depression-dominated regions. The objective of this study is to improve water quantity/quality modeling and its calibration for depression-dominated basins under wet and dry hydroclimatic conditions. Specifically, the Soil and Water Assessment Tool (SWAT) was applied for hydrologic and water quality modeling in the Red River of the North Basin (RRB). Surface depressions across the RRB were incorporated into the model by employing a surface delineation method and the impacts of depressions were evaluated for two modeling scenarios, MS1 (basic scenario) and MS2 (depression-oriented scenario). Moreover, a traditional calibration scheme (CS1) was compared to a wet-dry calibration scheme (CS2) that accounted for the effects of hydroclimatic variations on hydrologic and water quality modeling. Results indicated that the surface runoff simulation and the associated water quality modeling were improved when topographic characteristics of depressions were incorporated into the model (MS2). The Nash–Sutcliffe efficiency (NSE) coefficient indicated an average increase of 30.4% and 19.6% from CS1 to CS2 for the calibration and validation periods, respectively. Additionally, the CS2 provided acceptable simulations of water quality, with the NSE values of 0.50 and 0.74 for calibration and validation periods, respectively. These results highlight the enhanced capability of the proposed approach for simulating water quantity and quality for depression-dominated basins under the influence of varying hydroclimatic conditions.

1998 ◽  
Vol 38 (10) ◽  
pp. 165-172 ◽  
Author(s):  
Ruochuan Gu ◽  
Mei Dong

The conventional method for waste load allocations (WLA) employs spatial-differentiation, considering individual point sources, and temporal-integration, using a constant flow, typically 7Q10 low flow. This paper presents a watershed-based seasonal management approach, in which non-point source as well as point sources are incorporated, seasonal design flows are used for water quality analysis, and WLA are performend in a watershed scale. The strategy for surface water quality modeling in the watershed-based approach is described. The concept of seasonal discharge management is discussed and suggested for the watershed-based approach. A case study using the method for the Des Moines River, Iowa, USA is conducted. Modeling considerations and procedure are presented. The significance of non-point source pollutant load and its impact on water quality of the river is evaluated by analyzing field data. A water quality model is selected and validated against field measurements. The model is applied to projections of future water quality situations under different watershed management and water quality control scenarios with respect to river flow and pollutant loading rate.


Desalination ◽  
2010 ◽  
Vol 250 (1) ◽  
pp. 274-286 ◽  
Author(s):  
Vassilios Pisinaras ◽  
Christos Petalas ◽  
Georgios D. Gikas ◽  
Alexandra Gemitzi ◽  
Vassilios A. Tsihrintzis

2007 ◽  
Vol 56 (8) ◽  
pp. 49-56 ◽  
Author(s):  
J.C. Imhoff ◽  
J.L. Kittle ◽  
M.R. Gray ◽  
T.E. Johnson

During the last century, much of the United States experienced warming temperatures and changes in amount and intensity of precipitation. Changes in future climate conditions present additional risk to water and watershed managers. The most recent release of U.S. EPA's BASINS watershed modeling system includes a Climate Assessment Tool (CAT) that provides new capabilities for assessing impacts of climate change on water resources. The BASINS CAT provides users with the ability to modify historical climate and conduct systematic sensitivity analyses of specific hydrologic and water quality endpoints to changes in climate using the BASINS models (Hydrologic Simulation Program – FORTRAN (HSPF)). These capabilities are well suited for addressing questions about the potential impacts of climate change on key hydrologic and water quality goals using the watershed scale at which most important planning decisions are made. This paper discusses the concepts that motivated the CAT development effort; the resulting capabilities incorporated into BASINS CAT; and the opportunities that result from integrating climate assessment capabilities into a comprehensive watershed water quality modeling system.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 718
Author(s):  
Jeongho Han ◽  
Dongjun Lee ◽  
Seoro Lee ◽  
Se-Woong Chung ◽  
Seong Kim ◽  
...  

The impact of the channel geometry on water quantity and quality simulation of the Soil and Water Assessment Tool (SWAT) was evaluated for the Andong Dam watershed. The new equations to determine the bankfull width of the channels and the bottom width of the floodplains were developed using aerial photographs, and its performance was compared with the current equations of SWAT. The new equations were more exact than the current equations since the current equations tended to overestimate the widths of the channel and floodplain. When compared with the observed data, the streamflow of the scenario 2 (S2, applying the new equations) showed lower deviation and higher accuracy than scenario 1 (S1, applying the current equations) because the peak flow of S2 captured the observed data better due to the impact of the change geometry. Moreover, the water quality results of S2 outperformed S1 regarding suspended solid, total nitrogen, and dissolved oxygen. This is attributed to the variables, such as flow travel time, which is directly related to the channel geometry. Additionally, SWAT was modified to consider the various channel cross-sectional shapes. The results of this study suggest that the channel geometry information for the water quantity and quality estimation should be carefully applied, which could improve the model performance regarding streamflow and water quality simulations.


2009 ◽  
Vol 14 (4) ◽  
pp. 200-210 ◽  
Author(s):  
Robert B Ambrose ◽  
Tim A Wool ◽  
Thomas O. Barnwell

Sign in / Sign up

Export Citation Format

Share Document