scholarly journals Classroom Dust-Bound Polycyclic Aromatic Hydrocarbons in Jeddah Primary Schools, Saudi Arabia: Level, Characteristics and Health Risk Assessment

Author(s):  
Mansour A. Alghamdi ◽  
Salwa K. Hassan ◽  
Noura A. Alzahrani ◽  
Marwan Y. Al Sharif ◽  
Mamdouh I. Khoder

Data concerning polycyclic aromatic hydrocarbons (PAHs) in Jeddah’s schools, Saudi Arabia, and their implications for health risks to children, is scarce. Classroom air conditioner filter dusts were collected from primary schools in urban, suburban and residential areas of Jeddah. This study aimed to assess the characteristics of classroom-dust-bound PAHs and the health risks to children of PAH exposure. Average PAH concentrations were higher in urban schools than suburban and residential schools. Benzo (b)fluoranthene (BbF), benzo(ghi)perylene (BGP), chrysene (CRY) and Dibenz[a,h]anthracene (DBA) at urban and suburban schools and BbF, BGP, fluoranthene (FLT) and indeno (1, 2, 3, −cd)pyrene (IND) at residential schools were the dominant compounds in classroom dust. PAHs with five aromatic rings were the most abundant at all schools. The relative contribution of the individual PAH compounds to total PAH concentrations in the classroom dusts of schools indicate that the study areas do share a common source, vehicle emissions. Based on diagnostic ratios of PAHs, they are emitted from local pyrogenic sources, and traffic is the significant PAH source, with more significant contributions from gasoline-fueled than from diesel cars. Based on benzo[a]pyrene equivalent (BaPequi) calculations, total carcinogenic activity (TCA) for total PAHs represent 21.59% (urban schools), 20.99% (suburban schools), and 18.88% (residential schools) of total PAH concentrations. DBA and BaP were the most dominant compounds contributing to the TCA, suggesting the importance of BaP and DBA as surrogate compounds for PAHs in this schools. Based on incremental lifetime cancer risk (ILCingestion, ILCRinhalation, ILCRdermal) and total lifetime cancer risk (TLCR)) calculations, the order of cancer risk was: urban schools > suburban schools > residential schools. Both ingestion and dermal contact are major contributors to cancer risk. Among PAHs, DBA, BaP, BbF, benzo(a)anthracene (BaA), benzo(k)fluoranthene (BkF), and IND have the highest ILCR values at all schools. LCR and TLCR values at all schools were lower than 10−6, indicating virtual safety. DBA, BaP and BbF were the predominant contributors to cancer effects in all schools.

Author(s):  
Mansour A. Alghamdi ◽  
Salwa K. Hassan ◽  
Noura A. Alzahrani ◽  
Fahd M. Almehmadi ◽  
Mamdouh I. Khoder

Classrooms Air Conditioner Filter (CACF) particles represent all of the exposed particles that have migrated to the interior environment. This study was conducted to assess the heavy metals contamination in CACF particles from Jeddah primary schools located in urban, suburban and residential areas; and to evaluate their health risks of children exposure (non-carcinogenic and carcinogenic). Heavy metals levels in CACF particles of schools were in the following order: urban schools > suburban schools > residential schools. Fe, Mn and Zn were the dominant species. Geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) values indicated that the contamination levels was in the following order Cd > Pb > Zn > As > Cu > Ni > Mn > Cr > Co >V > Fe. School CACF particles was moderately contaminated with As and Zn and moderately to heavily contaminated with Pb and Cd. Enrichment factors (EFs) indicated that Zn, Cd, Pb, As and Cu in CACF particles were severe enriched. The hazard quotient (HQs) and hazards index (HI) values for heavy metals were lower than the acceptable level of one. As, Pb, Cr and Mn were exhibited high non-cancer effects for children. The lifetime cancer risk (LCR) and total lifetime cancer risk (TLCR), HQs and HI values for the different exposure pathways of heavy metals decreased in the following order: ingestion > dermal contact > inhalation. Carcinogenic and non-carcinogenic risk rank order of schools were urban schools > suburban schools > residential schools. The LCR and TLCR of heavy metals was in the following order: Co > Ni >Cr > Cd > As > Pb. The ingestion lifetime cancer risk (LCRing) and TLCR values from exposure to Ni and Cr in urban and suburban schools, Cd in urban schools, and Co in all Jeddah schools only exceed the acceptable range (1 × 10−6–1 × 10−4) Only LCRing and TLCR values from exposure to ∑ carcinogens exceed the acceptable level.


Author(s):  
Tekleweini Gereslassie ◽  
Ababo Workineh ◽  
Xiaoning Liu ◽  
Xue Yan ◽  
Jun Wang

Polycyclic aromatic hydrocarbons are large groups of ubiquitous environmental pollutants composed of two or more fused aromatic rings. This study was designed to evaluate the distribution, potential sources, and ecological and cancer risks of eleven polycyclic aromatic hydrocarbons from Huangpi soils in Wuhan, central China. The soil samples for this study were taken from 0–10 cm and 10–20 cm soil depths. A modified matrix solid-phase dispersion extraction method was applied to extract analytes from the soil samples. A gas chromatograph equipped with a flame ionization detector was used to determine the concentrations of the compounds. The sum mean concentrations of the polycyclic aromatic hydrocarbons were 138.93 and 154.99 µg kg−1 in the 0–10 cm and 10–20 cm soil depths, respectively. Benzo[a]pyrene and fluorene were the most abundant compounds in the 0–10 cm and 10–20 cm soil depths, respectively. The quantitative values of the pyrogenic index, total index, and diagnostic ratio used in this study showed that the polycyclic aromatic hydrocarbons have a pyrogenic origin. The negligible and maximum permissible concentrations values for naphthalene, acenaphthylene, acenaphthene, phenanthrene, anthracene, pyrene, benz[a]anthracene, and benzo[a]pyrene indicated a moderate ecological risk. The incremental lifetime cancer risk values for adults and children showed a low and moderate cancer risk, respectively.


2021 ◽  
Author(s):  
Ghafour Nourian ◽  
Neamat Haghighi ◽  
Tayebeh Tabatabaei ◽  
Esmaeil Kohgardi ◽  
Abdul Pazira

Abstract A total 20 sediment and 20 Indian halibut samples were sampled from Asaluyeh, Kangan, Khark, Emam Hasan and Bushehr coast, Bushehr province, Iran for studying distribution and health risk assessment of polycyclic aromatic hydrocarbons (PAHs). PAHs were analyzed using HPLC. The mean ƩPAHs concentrations in sediment and Indian halibut samples were 6.894 ± 1.4301 and 14.807 ± 7.486 mg/kg, respectively. There was a significant positive relationship (P < 0.05) between ƩPAHs, 2–3 ring compounds, and 4 ring compounds in the sediments and Indian halibut samples. ƩPAHs concentration in sediments and Indian halibuts was higher in Asaluyeh area followed by Khark area. The values of PAHs pollution in the Bushehr province coastline were low to very high. The toxic equivalent quotient (TEQ), excess cancer risk (ECR), and the incremental lifetime cancer risk (ILCR) were applied for health risk assessment. Based on TEQ calculation, DA was a good marker in assessing PAHs related to health risk. DDI values for ∑PAHs and ∑CPAHs (carcinogenic PAHs) were also highest in Asaluyeh and Kangan, respectively. ILCR values for sediments in 10% of all stations and cumulative ECR values for Indian halibuts in all studied areas exceeded the USEPA acceptable level thus suggesting a potential cancer risk. Thus, regular monitoring of PAHs pollutants in the coastlines of Bushehr province is recommended.


Author(s):  
Nor Ashikin Sopian ◽  
Juliana Jalaludin ◽  
Suhaili Abu Bakar ◽  
Titi Rahmawati Hamedon ◽  
Mohd Talib Latif

This study aimed to assess the association of exposure to particle-bound (PM2.5) polycyclic aromatic hydrocarbons (PAHs) with potential genotoxicity and cancer risk among children living near the petrochemical industry and comparative populations in Malaysia. PM2.5 samples were collected using a low-volume sampler for 24 h at three primary schools located within 5 km of the industrial area and three comparative schools more than 20 km away from any industrial activity. A gas chromatography–mass spectrometer was used to determine the analysis of 16 United States Environmental Protection Agency (USEPA) priority PAHs. A total of 205 children were randomly selected to assess the DNA damage in buccal cells, employing the comet assay. Total PAHs measured in exposed and comparative schools varied, respectively, from 61.60 to 64.64 ng m−3 and from 5.93 to 35.06 ng m−3. The PAH emission in exposed schools was contributed mainly by traffic and industrial emissions, dependent on the source apportionment. The 95th percentiles of the incremental lifetime cancer risk estimated using Monte Carlo simulation revealed that the inhalation risk for the exposed children and comparative populations was 2.22 × 10−6 and 2.95 × 10−7, respectively. The degree of DNA injury was substantially more severe among the exposed children relative to the comparative community. This study reveals that higher exposure to PAHs increases the risk of genotoxic effects and cancer among children.


Sign in / Sign up

Export Citation Format

Share Document