scholarly journals The Toxicity Exerted by the Antibiotic Sulfadiazine on the Growth of Soil Bacterial Communities May Increase over Time

Author(s):  
Vanesa Santás-Miguel ◽  
Laura Rodríguez-González ◽  
Avelino Núñez-Delgado ◽  
Montserrat Díaz-Raviña ◽  
Manuel Arias-Estévez ◽  
...  

The toxicity exerted by the antibiotic sulfadiazine on the growth of soil bacterial communities was studied in two agricultural soils for a period of 100 days. In the short-term (2 days of incubation), the effect of sulfadiazine on bacterial growth was low (no inhibition or inhibition <32% for a dose of 2000 mg·kg−1). However, sulfadiazine toxicity increased with time, achieving values of 40% inhibition, affecting bacterial growth in both soils after 100 days of incubation. These results, which were here observed for the first time for any antibiotic in soil samples, suggest that long-term experiments would be required for performing an adequate antibiotics risk assessment, as short-term experiments may underestimate toxicity effects.

2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

2020 ◽  
Author(s):  
Capucine Baubin ◽  
Arielle M. Farrell ◽  
Adam Šťovíček ◽  
Lusine Ghazaryan ◽  
Itamar Giladi ◽  
...  

ABSTRACTEcosystem engineers (EEs) are present in every environment and are known to strongly influence ecological processes and thus shape the distribution of species and resources. In this study, we assessed the direct and indirect effect of two EEs (perennial shrubs and ant nests), individually and combined, on the composition and function of arid soil bacterial communities. To that end, top soil samples were collected in the Negev Desert Highlands during the dry season from four patch types: (1) barren soil; (2) under shrubs; (3) near ant nests; or (4) near ant nests situated under shrubs. The bacterial composition was evaluated in the soil samples (fourteen replicates per patch type) using 16S rRNA gene amplicon sequencing, together with physico-chemical measures of the soil, and the potential functions of the community. We have found that the EEs differently affected the community composition. Indeed, barren patches supported a soil microbiome, dominated by Rubrobacter and Proteobacteria, while in EE patches the Deinococcus-Thermus phylum was dominating. The presence of the EEs similarly enhanced the abundance of phototrophic, nitrogen cycle and stress- related genes. In addition, only when both EEs were combined, were the soil characteristics altered. Our results imply that arid landscapes foster unique communities selected by each EE(s), solo or in combination, yet these communities have similar potential biological traits to persist under the harsh arid conditions. Environments with multiple EEs are complicated to study due to the possibility of non-additive effects of EEs and thus further research should be done.IMPORTANCEEcosystem engineers are organisms that can create, modify, or maintain their habitat. They are present in various environments but are particularly conspicuous in desert ecosystems, where their presence is tightly linked to vital resources like water or nutrients. Despite their key role in structuring and controlling desert ecosystems, joint engineering, and their effect on soil function, are unknown. Our study explores the contributions of key ecosystem engineers to the diversity and function of their soil microbiome allowing better understanding of their role in shaping habitats and engineering their activity


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Noriko A. Cassman ◽  
Marcio F. A. Leite ◽  
Yao Pan ◽  
Mattias de Hollander ◽  
Johannes A. van Veen ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2425
Author(s):  
Juan Li ◽  
Yanchen Wen ◽  
Xiangdong Yang

Studies of soil DNA-based and RNA-based bacterial communities under contrasting long-term fertilization regimes can provide valuable insights into how agricultural management affects soil microbial structure and functional diversity. In this study, soil bacterial communities subjected to six fertility treatments in an alkaline soil over 27 years were investigated by 454 pyrosequencing based on 16S rDNA and 16S rRNA. Long-term fertilization showed significant influences on the diversity of the soil DNA-based bacteria, as well as on their RNA-based members. The top five phyla (Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria, and Planctomycetes) were found in both the DNA- and RNA-based samples. However, the relative abundances of these phyla at both DNA and RNA levels were showed significantly different. Analysis results showed that the diversity of the 16S rRNA samples was consistently lower than that of the rDNA samples, however, 16S rRNA samples had higher relative abundance. PICRUSt analysis indicated that glycan biosynthesis and metabolism were detected mainly in the DNA samples, while metabolism and degradation of xenobiotics and the metabolism of amino acids, terpenoids and polyketides were relatively higher in the RNA samples. Bacilli were significantly more abundant in all the OM-fertilized soils. Redundancy analysis indicated that the relative abundances of both DNA- and RNA-based bacterial groups were correlated with soil total organic carbon content, nitrogen content, Olsen-P, and soil pH. Moreover, the RNA-based Bacilli were positively correlated with available phosphorus (Olsen-P).


2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Ashwini Shanthpure ◽  
Devaki Girija ◽  
Panchami Pottekkat Sidharthan ◽  
Moossa Puthen Peedikakkal ◽  
Sneha Sasidharan Nair

Sign in / Sign up

Export Citation Format

Share Document