scholarly journals Analysis of the Cause of Household Carbon Lock-In for Chinese Urban Households

Author(s):  
Lingyun Mi ◽  
Yuhuan Sun ◽  
Lijie Qiao ◽  
Tianwen Jia ◽  
Yang Yang ◽  
...  

Household energy conservation is an important contributor to achieve the carbon emission reduction target. However, the actual energy-saving effect of Chinese households is under expectation. One reason for this is because household energy consumption is locked in at a certain level, which has become an obstacle to household carbon emission reduction. In order to reduce this obstacle, this study explored the cause of household carbon lock-in based on grounded theory, targeting newly furnished households. A theoretical model was developed to reveal the formation mechanism of carbon lock-in effect in the purchasing process of household energy-using appliances. NVivo 12 software was used to analyze the decoration diaries of 616 sample households, and the results showed that (1) the direct antecedent of the household carbon lock-in effect was the lock-in of purchasing behavior, and the household carbon lock-in effect was mainly exhibited in the consumption path dependence (of energy-using appliances) and the solidification of energy structure; (2) the willingness to purchase household appliances was the direct antecedent of purchasing behavioral lock-in, and the cost had a moderating effect on the transformation from purchase willingness to behavioral lock-in; and (3) in the process of purchasing household appliances, reference groups, value perception, and ecological awareness can promote purchasing behavioral lock-in by affecting willingness of purchase. Suggestions to promote unlocking of household carbon were also proposed.

2021 ◽  
Vol 9 ◽  
Author(s):  
Meng Wang ◽  
Lei Feng ◽  
Pengfei Zhang ◽  
Gaohang Cao ◽  
Hanbin Liu ◽  
...  

Xinjiang production and Construction Corps (XPCC) is an important provincial administration in China and vigorously promotes the construction of industrialization. However, there has been little research on its emissions. This study first established the 1998-2018 XPCC subsectoral carbon emission inventory based on the Intergovernmental Panel on Climate Change (IPCC) carbon emission inventory method and adopted the logarithmic mean Divisia indexmethod (LMDI) model to analyze the driving factors. The results revealed that from 1998 to 2018, the total carbon emissions in the XPCC increased from 6.11 Mt CO2 in 1998 to 115.71 Mt CO2 in 2018. For the energy structure, raw coal, coke and industrial processes were the main contributors to carbon emissions. For industrial structure, the main emission sectors were the production and supply of electric power, steam and hot water, petroleum processing and coking, raw chemical materials and chemical products, and smelting and pressing of nonferrous metals. In addition, the economic effect was the leading factor promoting the growth of the corps carbon emissions, followed by technical and population effects. The energy structure effect was the only factor yielding a low emission reduction degree. This research provides policy recommendations for the XPCC to formulate effective carbon emission reduction measures, which is conducive to the construction of a low-carbon society. Moreover, it is of guiding significance for the development of carbon emission reduction actions for the enterprises under the corps and provides a reference value for other provincial regions.


2020 ◽  
pp. 135481662092489
Author(s):  
Jianping Zha ◽  
Rong Fan ◽  
Yao Yao ◽  
Lamei He ◽  
Yuanyuan Meng

Understanding tourism carbon emissions and their influencing factors from the perspective of industrial linkages can inform policy-making in the development of sustainable tourism. Based on a combination of the environmental input–output (I-O) model and structural decomposition analysis, this article develops a novel framework for analyzing the industrial linkage pathways of China’s carbon emissions linked to tourism and identifying the driving factors affecting change in carbon emissions embodied in the supply chain. Results reveal that most carbon emissions linked to China’s broad-sense or narrow-sense tourism industry derive from some critical upstream industries, that is, indirect carbon emissions resulting from the intermediate production processes. Significant differences exist in the industrial linkage pathways of carbon emissions between tourism subsectors; thus, emission reduction policies for the broad-sense or narrow-sense tourism industry should be formulated based on these key interindustrial linkage pathways. The direct energy consumption intensity effect and energy structure effect are beneficial to carbon emission reduction, while the I-O structure effect reverses the effect on carbon emission reduction from negative to positive.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Sign in / Sign up

Export Citation Format

Share Document