scholarly journals Physiologic Changes during Sponge Bathing in Premature Infants

Author(s):  
Jongcheul Lee ◽  
Yaelim Lee

In this study, we observed physiological reactions of premature infants during sponge bathing in the neonatal intensive care unit (NICU). The infants’ body temperature, heart rate, and oxygen saturation were monitored to examine hypothermia risks during bathing. The participants of the study were 32 premature infants who were hospitalized right after their birth in the V hospital in Korea between December 2012 and August 2013. The informed consents of the study were received from the infants’ parents. The infants were randomly assigned into two-day and four-day bath cycle groups and their physiological reactions were monitored before bathing as well as 5 and 10 min after bathing. The collected data were analyzed using the SPSS statistical package through t-test. A significant drop in body temperature was noted in both groups; that is, 4-day bathing cycle and 2-day bathing cycle (p < 0.001). However, there were no significant changes in heart rate or transcutaneous oxygen levels. There was no significant change between groups at each measurement point. In order to minimize the physiological instability that may be caused during bathing, the care providers should try to complete bathing within the shortest possible time and to make bathing a pleasant and useful stimulus for infants.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 999
Author(s):  
Henry Dore ◽  
Rodrigo Aviles-Espinosa ◽  
Zhenhua Luo ◽  
Oana Anton ◽  
Heike Rabe ◽  
...  

Heart rate monitoring is the predominant quantitative health indicator of a newborn in the delivery room. A rapid and accurate heart rate measurement is vital during the first minutes after birth. Clinical recommendations suggest that electrocardiogram (ECG) monitoring should be widely adopted in the neonatal intensive care unit to reduce infant mortality and improve long term health outcomes in births that require intervention. Novel non-contact electrocardiogram sensors can reduce the time from birth to heart rate reading as well as providing unobtrusive and continuous monitoring during intervention. In this work we report the design and development of a solution to provide high resolution, real time electrocardiogram data to the clinicians within the delivery room using non-contact electric potential sensors embedded in a neonatal intensive care unit mattress. A real-time high-resolution electrocardiogram acquisition solution based on a low power embedded system was developed and textile embedded electrodes were fabricated and characterised. Proof of concept tests were carried out on simulated and human cardiac signals, producing electrocardiograms suitable for the calculation of heart rate having an accuracy within ±1 beat per minute using a test ECG signal, ECG recordings from a human volunteer with a correlation coefficient of ~ 87% proved accurate beat to beat morphology reproduction of the waveform without morphological alterations and a time from application to heart rate display below 6 s. This provides evidence that flexible non-contact textile-based electrodes can be embedded in wearable devices for assisting births through heart rate monitoring and serves as a proof of concept for a complete neonate electrocardiogram monitoring system.


2018 ◽  
Vol 9 (5) ◽  
pp. 14
Author(s):  
Jenn Gonya ◽  
Jessica Niski ◽  
Nicole Cistone

The neonatal intensive care unit (NICU) is, inherently, a trauma environment for the extremely premature infant. This trauma is often exacerbated by nurse caregiving practices that can be modified and still remain effective. Our study explored how behavior analytics could be used to implement an intervention known as Care by Cues and how the intervention might, ultimately, impact infant physiologic stability.


2009 ◽  
Vol 117 (4) ◽  
pp. 639-644 ◽  
Author(s):  
Antonia M. Calafat ◽  
Jennifer Weuve ◽  
Xiaoyun Ye ◽  
Lily T. Jia ◽  
Howard Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document