scholarly journals Bringing Light into Darkness—Comparison of Different Personal Dosimeters for Assessment of Solar Ultraviolet Exposure

Author(s):  
Claudine Strehl ◽  
Timo Heepenstrick ◽  
Peter Knuschke ◽  
Marc Wittlich

(1) Measuring personal exposure to solar ultraviolet radiation (UVR) poses a major challenges for researchers. Often, the study design determines the measuring devices that can be used, be it the duration of measurements or size restrictions on different body parts. It is therefore of great importance that measuring devices produce comparable results despite technical differences and modes of operation. Particularly when measurement results from different studies dealing with personal UV exposure are to be compared with each other, the need for intercomparability and intercalibration factors between different measurement systems becomes significant. (2) Three commonly used dosimeter types—(polysulphone film (PSF), biological, and electronic dosimeters)—were selected to perform intercalibration measurements. They differ in measurement principle and sensitivity, measurement accuracy, and susceptibility to inaccuracies. The aim was to derive intercalibration factors for these dosimeter types. (3) While a calibration factor between PSF and electronic dosimeters of about 1.3 could be derived for direct irradiation of the dosimeters, this was not the case for larger angles of incidence of solar radiation with increasing fractions of diffuse irradiation. Electronic dosimeters show small standard deviation across all measurements. For biological dosimeters, no intercalibration factor could be found with respect to PSF and electronic dosimeters. In a use case, the relation between steady-state measurements and personal measurements was studied. On average, persons acquired only a small fraction of the ambient radiation.

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 440
Author(s):  
Nathan J. Downs ◽  
Taryn Axelsen ◽  
Alfio V. Parisi ◽  
Peter W. Schouten ◽  
Ben R. Dexter

Triathletes present an extreme case of modelled behaviour in outdoor sport that favours enhanced exposure to solar ultraviolet radiation. This research presents personal solar ultraviolet exposures, measured using all-weather polysulphone film dosimeters, to triathletes during the distinct swimming, cycling and running stages of competitive Sprint, Olympic and Ironman events conducted within Australia and New Zealand. Measurements of exposure are made for each triathlon stage using film dosimeters fixed at a single site to the headwear of competing triathletes. Exposures are expressed relative to the local ambient and as absolute calibrated erythemally effective values across a total of eight triathlon courses (two Ironman, one half Ironman, one Olympic-distance, and four Sprint events). Competitor exposure results during training are also presented. Exposures range from between 0.2 to 6.8 SED/h (SED: standard erythema dose) depending upon the time of year, the local time of each event and cloud conditions. Cycle stage exposures can exceed 20 SED and represent the highest exposure fraction of any triathlon (average = 32%). The next highest stage exposure occurred during the swim (average = 28%), followed by the run (average = 26%). During an Ironman, personal competitor exposures exceed 30 SED, making triathlon a sporting discipline with potentially the highest personal ultraviolet exposure risk.


2020 ◽  
Author(s):  
David Jean du Preez ◽  
Suzana Blesic ◽  
Caradee Y. Wright ◽  
Djordje Stratimirovic ◽  
Jelena Ajtic ◽  
...  

<p>We investigated scaling properties of measurements of personal exposure to solar ultraviolet radiation (pUVR) using the 2nd order detrended fluctuation analysis (DFA2) and the wavelet transform spectral analysis (WTS). Studies of pUVR are important to identify populations at-risk of excess and insufficient exposure given the negative and positive health impacts, respectively, of time spent in the sun. These very high frequency recordings are collected by electronic UVR dosimeters. We analyzed sun exposure patterns of school children in South Africa and construction workers and work site supervisors in New Zealand, and we found scaling behavior in all our data. The observed scaling changed from uncorrelated to long-range correlated with increasing duration of sun exposure. We found peaks in the WTS spectra that mark characteristic times in pUVR behavior, which may be connected to both human outside activity and natural (solar) daily cycles. We further hypothesized that the WT slope would be influenced by the duration of time that a person spends in continuum outside and addressed this hypothesis by using an experimental study approach. To that end we performed combined DFA2-WTS analysis on a subset of individual records taken on the same day under very similar outdoor conditions and used the theoretical superposition rule provided by systematic assessments of effects of trends and nonstationarities on DFA2 as a methodological mean to trace and subsequently model human behavioral patterns in pUVR time series.</p>


2020 ◽  
pp. 3-8
Author(s):  
L.F. Vitushkin ◽  
F.F. Karpeshin ◽  
E.P. Krivtsov ◽  
P.P. Krolitsky ◽  
V.V. Nalivaev ◽  
...  

The State special primary acceleration measurement standard for gravimetry (GET 190-2019), its composition, principle of operation and basic metrological characteristics are presented. This standard is on the upper level of reference for free-fall acceleration measurements. Its accuracy and reliability were improved as a result of optimisation of the adjustment procedures for measurement systems and its integration within the upgraded systems, units and modern hardware components. A special attention was given to adjusting the corrections applied to measurement results with respect to procedural, physical and technical limitations. The used investigation methods made it possibled to confirm the measurement range of GET 190-2019 and to determine the contributions of main sources of errors and the total value of these errors. The measurement characteristics and GET 90-2019 were confirmed by the results obtained from measurements of the absolute value of the free fall acceleration at the gravimetrical site “Lomonosov-1” and by their collation with the data of different dates obtained from measurements by high-precision foreign and domestic gravimeters. Topicality of such measurements ensues from the requirements to handle the applied problems that need data on parameters of the Earth gravitational field, to be adequately faced. Geophysics and navigation are the main fields of application for high-precision measurements in this field.


2003 ◽  
Vol 78 (6) ◽  
pp. 603 ◽  
Author(s):  
A. Oppenrieder ◽  
P. Hoeppe ◽  
P. Koepke ◽  
J. Reuder ◽  
J. Schween ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document