scholarly journals Effect of Different Agricultural Farming Practices on Microbial Biomass and Enzyme Activities of Celery Growing Field Soil

Author(s):  
Lin Wang ◽  
Mandeep Kaur ◽  
Ping Zhang ◽  
Ji Li ◽  
Ming Xu

Soil quality is directly affected by alterations in its microbiological, biological, biochemical, physical, and chemical aspects. The microbiological activities of soil can affect soil fertility and plant growth because it can speed up the cycling of nutrients, enzymes, and hormones that are needed by plants for proper growth and development. The use of different agricultural management practices can influence microbial biomass and enzyme activities by altering soil microclimate, soil microorganism habitat, and nutrient cycling. Based on this, the present work planned to evaluate the impact of conventional, low-input, and organic farming systems in a vegetable field growing celery on microbial biomass and different soil enzyme activities. The present study showed a comparison of the effect of different practices on biological soil quality indicators during two sampling times, i.e., one month after colonization and one month before harvesting. It was observed that the soil microbial biomass in the organic farming system was significantly higher than that found in conventional and low-input practices. Under an organic farming system, the soil microbial biomass in December was significantly higher than that in October. The soil microbial biomass carbon in the 0–20 cm soil layer showed higher variation compared to that in the 20–40 cm layer for all the three of the farming management practices that were used in the study. Additionally, the soil total carbon and total organic carbon were recorded as being higher in the December samples than they were in the October samples. Under all the three of the management practices that were applied, the soil catalase activity was higher in the October samples than it was in the December soil samples that were collected the from 20–40 cm soil layer compared to those that were taken from the 0–20 cm layer. The application of organic fertilizer (chicken and cowmanure compost) resulted inincreases in the soil urease and in the protease activity. The protease activity of the soil samples that were extracted from the 0–20 cm and 20–40 cm soil layers in October was higher in the samples that were taken from farms using conventional practices than it was in the samples that were taken from farms using organic and low-input practices, while the samples that were collected during December from both of the soil layers showed higher protease activity when organic methods had been used. No significant variation in the soil urease activity was observed between the two soil layer samples. Urease activity was the highest when organic management practices were being used, followed by the low-input and the conventional modes. For the conventional and low-input practices, the soil urease activity showed an obvious trend of change that was related to thetime of sampling, i.e., activity in December was significantly higher than activity in October. The novelty of this study was to determine the microbial biomass carbon and enzymatic activity in a six-field crop rotation (tomato, cucumber, celery, fennel, cauliflower, and eggplant) using three management practices: low-input, conventional, and organic systems. The present study showed that the long-term application of organic fertilizers plays a large role in maintaining excellent microbial and enzyme activitythat result in improved soil quality.

2020 ◽  
Vol 54 (3 (253)) ◽  
pp. 235-245
Author(s):  
K.A. Ghazaryan ◽  
H.S. Movsesyan

The aim of this study was to define a relationship between heavy metal (Cu, Mo) pollution of soil and various extracellular enzyme activities. Six enzymatic activities involved in cycles of carbon, nitrogen, phosphorus and sulfur (β-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoesterase, alkaline phosphomonoesterase, and arylsulphatase) as well as microbial biomass were determined in soil samples collected in the surroundings of Zangezur Copper and Molybdenum Combine. The investigations showed that pollution of soil with copper and molybdenum led to a decrease in microbial biomass and soil enzymatic activity, which in turn had a negative impact on cycles of chemical elements, in particular C, P, N and S. This gives reason to conclude that the changes in soil microbial biomass and enzymatic activity may act as indicators of soil biological activity and quality.


2020 ◽  
Vol 8 (6) ◽  
pp. 811 ◽  
Author(s):  
Jie Xu ◽  
Bing Liu ◽  
Zhao-lei Qu ◽  
Yang Ma ◽  
Hui Sun

Soil microorganisms and extracellular enzymes play important roles in soil nutrient cycling. Currently, China has the second-largest area of eucalyptus plantations in the world. Information on the effects of eucalyptus age and species of trees on soil microbial biomass and enzyme activities, however, is limited. In this paper, the soil microbial biomass and enzyme activities were studied in eucalyptus plantations with different ages (1 and 5+ years) and species of trees (E. urophylla×E. grandis, E. camaldulens and E. pellita) in South China. The results showed that both plantation age and eucalyptus species could affect the total microbial biomass and fungal biomass, whereas the bacterial biomass was affected only by plantation age. The fungal biomass and the fungi-to-bacteria ratio significantly increased along with increasing plantation age. Similarly, the plantation age and eucalyptus species significantly affected the enzyme activities associated with carbon cycling (β-xylosidase, β-d-glucuronidase, β-cellobiosidase and β-glucosidase). The activities of β-d-glucuronidase and β-glucosidase were significantly higher in the E. camaldulens plantation. The enzymes involved in nitrogen (N-acetyl-glucosamidase) and sulfur (sulfatase) cycling were only affected by the eucalyptus plantation age and species, respectively. The results highlight the importance of the age and species of eucalyptus plantations on soil microbial activities.


2017 ◽  
Vol 37 (1) ◽  
Author(s):  
周嘉聪 ZHOU Jiacong ◽  
刘小飞 LIU Xiaofei ◽  
郑永 ZHENG Yong ◽  
纪宇皝 JI Yuhuang ◽  
李先锋 LI Xianfeng ◽  
...  

2016 ◽  
Vol 36 (18) ◽  
Author(s):  
何芳兰 HE Fanglan ◽  
金红喜 JIN Hongxi ◽  
王锁民 WANG Suoming ◽  
韩生慧 HAN Shenghui ◽  
曾荣 ZENG Rong ◽  
...  

2019 ◽  
Vol 39 (8) ◽  
Author(s):  
赵盼盼 ZHAO Panpan ◽  
周嘉聪 ZHOU Jiacong ◽  
林开淼 LIN Kaimiao ◽  
林伟盛 LIN Weisheng ◽  
袁萍 YUAN Ping ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document