scholarly journals Performance of Heart Failure Patients with Severely Reduced Ejection Fraction during Cardiopulmonary Exercise Testing on Treadmill and Cycle Ergometer; Similarities and Differences

Author(s):  
Reza Mazaheri ◽  
Mohammad Sadeghian ◽  
Mahshid Nazarieh ◽  
David Niederseer ◽  
Christian Schmied

Background: Peak oxygen consumption (VO2) measured by cardiopulmonary exercise testing (CPET) is a significant predictor of mortality and future transplantation in heart failure patients with severely reduced ejection fraction (HFrEF). The present study evaluated the differences in peak VO2 and other prognostic variables between treadmill and cycle CPETs in these patients. Methods: In this cross-over study design, thirty males with severe HFrEF underwent CPET on both a treadmill and a cycle ergometer within 2–5 days apart, and important CPET parameters between two exercise test modalities were compared. Results: Peak VO2 was 23.12% higher on the treadmill than on cycle (20.55 ± 3.3 vs. 16.69 ± 3.01, p < 0.001, respectively). Minute ventilation to carbon dioxide production (VE/VCO2) slope was not different between the two CPET modes (p = 0.32). There was a strong positive correlation between the VE/VCO2 slopes during treadmill and cycle testing (r = 0.79; p < 0.001). VE/VCO2 slope was not related to peak respiratory exchange ratio (RER) in either modality (treadmill, r = 0.13, p = 0.48; cycle, r = 0.25, p = 0.17). The RER level was significantly higher on the cycle ergometer (p < 0.001). Conclusion: Peak VO2 is higher on treadmill than on cycle ergometer in severe HFrEF patients. In addition, VE/VCO2 slope is not a modality dependent parameter and is not related to the patients’ effort during CPET.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Greta Generati ◽  
Francesco Bandera ◽  
Marta Pellegrino ◽  
Valentina Labate ◽  
Eleonora Alfonzetti ◽  
...  

Background: In heart failure (HF) patients the severity of mitral regurgitation (MR) at rest has a well established prognostic value and its increase during exercise further adds to an increased risk. Our goal was to define the relationship between the degree of exercise MR severity with cardiopulmonary and echocardiographic related phenotypes in a cohort of HF patients. Methods: 71 HF reduced ejection fraction patients (mean age 67±11; male 72%; ischemic etiology 61%; NYHA class I, II, III and IV 13%, 36%, 39% and 12%, mean ejection fraction 33±9%) underwent cardiopulmonary exercise test (CPET) on tiltable cycle-ergometer combined with echocardiography at rest and during exercise. The population was divided into two groups according to the degree of functional peak MR: no to mild/moderate MR (no MR, MR1+ and MR2+) vs moderate/severe MR (MR3+ and MR4+). Results: A good correlation (ρ coefficient= 0.49) was found between the degree of dynamic MR and PASP at peak exercise. Despite similar echocardiographic profile at rest patients with significant peak MR (MR≥3+) had worse exercise performance (lower peak VO2, O2 pulse and workload) and impaired ventilatory efficiency (higher VE/VCO2 slope). Conclusions: In HF patients the severity of exercise-induced MR is associated with the most unfavorable performance and pulmonary hemodynamic response. A combined approach with CPET and echocardiographic assessment can help to early unmask and target functional MR and its related unfavorable phenotypes.


Sign in / Sign up

Export Citation Format

Share Document