scholarly journals Spatio-Temporal Variation Analysis of the Biological Boundary Temperature Index Based on Accumulated Temperature: A Case Study of the Yangtze River Basin

2021 ◽  
Vol 10 (10) ◽  
pp. 675
Author(s):  
Guangxun Shi ◽  
Peng Ye ◽  
Xianwu Yang

Active accumulated temperature is an important index of agricultural heat resources in a region. Based on the temperature data of the Yangtze River Basin from 1970 to 2014, this paper analyzed the characteristics of the temporal and spatial variations of the biological boundary temperature in the Yangtze River Basin. The main conclusions were drawn as follows: (1) since 1970, the accumulated temperature of ≥0 °C in the northern subtropical zone, mid-subtropical zone, and plateau climate zone showed overall increasing trends, and the trends were 122 (p < 0.001), 87.7 (p < 0.001), and 75.3 °C/10a (p < 0.001), respectively. The accumulated temperature of ≥5 °C showed an upward trend, and the change tendency rates were 122.6 (p < 0.001), 90.5 (p < 0.001), and 81.4 °C/10a (p < 0.001), respectively. The accumulated temperature of ≥10 °C showed overall increasing trends and the trends were 115.7 (p < 0.001), 92.5 (p < 0.001), and 78.9 °C/10a (p < 0.001). Accumulated temperatures of ≥0 °C, ≥5 °C, and ≥10 °C in the northern subtropical zone increased significantly higher than that in the mid-subtropical zone and plateau climate zone. (2) The accumulated temperatures of ≥0 °C, ≥5 °C, and ≥10 °C in the northern subtropical zone showed an abrupt change in 1997. In the mid-subtropical zone and plateau climate zone, there was an abrupt change in the accumulated temperatures of ≥0 °C and ≥5 °C in 1994, and in the northern subtropical zone, the abrupt change of the accumulated temperature ≥10 °C occurred in 1998. (3) There are obvious differences in the biological boundary temperature within the Yangtze River Basin, and the stations with large increases are mainly distributed in the middle and lower reaches, such as the Hanshui Basin, the Poyang Lake Basin, the Taihu Lake Basin, and the middle and lower reaches of the mainstream area. The initial day, final day, and continuous days showed a trend of advancement, postponement, and extension, respectively. Besides, the heat resources showed significant increasing trends, which is of guiding significance for the future production and development of agriculture in the region. With the increase of heat resources in the Yangtze River Basin, appropriate late-maturing varieties should be selected in variety breeding, to make full use of heat resources and improve the quality of agricultural products. Secondly, the planting system should be adjusted and the multiple cropping index improved to steadily increase agricultural output. This brings new opportunities to adjust the structure of the agricultural industry and increase farmers’ income, in the Yangtze River basin.

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 731
Author(s):  
Zhuoqing Hao ◽  
Jixia Huang ◽  
Yantao Zhou ◽  
Guofei Fang

The Yangtze River Basin is among the river basins with the strongest strategic support and developmental power in China. As an invasive species, the pinewood nematode (PWN) Bursaphelenchus xylophilus has introduced a serious obstacle to the high-quality development of the economic and ecological synchronization of the Yangtze River Basin. This study analyses the occurrence and spread of pine wilt disease (PWD) with the aim of effectively managing and controlling the spread of PWD in the Yangtze River Basin. In this study, statistical data of PWD-affected areas in the Yangtze River Basin are used to analyse the occurrence and spread of PWD in the study area using spatiotemporal visualization analysis and spatiotemporal scanning statistics technology. From 2000 to 2018, PWD in the study area showed an “increasing-decreasing-increasing” trend, and PWD increased explosively in 2018. The spatial spread of PWD showed a “jumping propagation-multi-point outbreak-point to surface spread” pattern, moving west along the river. Important clusters were concentrated in the Jiangsu-Zhejiang area from 2000 to 2015, forming a cluster including Jiangsu and Zhejiang. Then, from 2015–2018, important clusters were concentrated in Chongqing. According to the spatiotemporal scanning results, PWD showed high aggregation in the four regions of Zhejiang, Chongqing, Hubei, and Jiangxi from 2000 to 2018. In the future, management systems for the prevention and treatment of PWD, including ecological restoration programs, will require more attention.


2021 ◽  
Vol 13 (15) ◽  
pp. 3023
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jiabo Yin ◽  
Lei Gu ◽  
Feng Xiong

Flooding is one of the most widespread and frequent weather-related hazards that has devastating impacts on the society and ecosystem. Monitoring flooding is a vital issue for water resources management, socioeconomic sustainable development, and maintaining life safety. By integrating multiple precipitation, evapotranspiration, and GRACE-Follow On (GRAFO) terrestrial water storage anomaly (TWSA) datasets, this study uses the water balance principle coupled with the CaMa-Flood hydrodynamic model to access the spatiotemporal discharge variations in the Yangtze River basin during the 2020 catastrophic flood. The results show that: (1) TWSA bias dominates the overall uncertainty in runoff at the basin scale, which is spatially governed by uncertainty in TWSA and precipitation; (2) spatially, a field significance at the 5% level is discovered for the correlations between GRAFO-based runoff and GLDAS results. The GRAFO-derived discharge series has a high correlation coefficient with either in situ observations and hydrological simulations for the Yangtze River basin, at the 0.01 significance level; (3) the GRAFO-derived discharge observes the flood peaks in July and August and the recession process in October 2020. Our developed approach provides an alternative way of monitoring large-scale extreme hydrological events with the latest GRAFO release and CaMa-Flood model.


2013 ◽  
Vol 116 (3-4) ◽  
pp. 447-461 ◽  
Author(s):  
Yongqin David Chen ◽  
Qiang Zhang ◽  
Mingzhong Xiao ◽  
Vijay P. Singh ◽  
Yee Leung ◽  
...  

2013 ◽  
Vol 17 (5) ◽  
pp. 1985-2000 ◽  
Author(s):  
Y. Huang ◽  
M. S. Salama ◽  
M. S. Krol ◽  
R. van der Velde ◽  
A. Y. Hoekstra ◽  
...  

Abstract. In this study, we analyze 32 yr of terrestrial water storage (TWS) data obtained from the Interim Reanalysis Data (ERA-Interim) and Noah model from the Global Land Data Assimilation System (GLDAS-Noah) for the period 1979 to 2010. The accuracy of these datasets is validated using 26 yr (1979–2004) of runoff data from the Yichang gauging station and comparing them with 32 yr of independent precipitation data obtained from the Global Precipitation Climatology Centre Full Data Reanalysis Version 6 (GPCC) and NOAA's PRECipitation REConstruction over Land (PREC/L). Spatial and temporal analysis of the TWS data shows that TWS in the Yangtze River basin has decreased significantly since the year 1998. The driest period in the basin occurred between 2005 and 2010, and particularly in the middle and lower Yangtze reaches. The TWS figures changed abruptly to persistently high negative anomalies in the middle and lower Yangtze reaches in 2004. The year 2006 is identified as major inflection point, at which the system starts exhibiting a persistent decrease in TWS. Comparing these TWS trends with independent precipitation datasets shows that the recent decrease in TWS can be attributed mainly to a decrease in the amount of precipitation. Our findings are based on observations and modeling datasets and confirm previous results based on gauging station datasets.


Sign in / Sign up

Export Citation Format

Share Document