scholarly journals An Improved Hybrid Segmentation Method for Remote Sensing Images

2019 ◽  
Vol 8 (12) ◽  
pp. 543
Author(s):  
Jun Wang ◽  
Lili Jiang ◽  
Yongji Wang ◽  
Qingwen Qi

Image segmentation technology, which can be used to completely partition a remote sensing image into non-overlapping regions in the image space, plays an indispensable role in high-resolution remote sensing image classification. Recently, the segmentation methods that combine segmenting with merging have attracted researchers’ attention. However, the existing methods ignore the fact that the same parameters must be applied to every segmented geo-object, and fail to consider the homogeneity between adjacent geo-objects. This paper develops an improved remote sensing image segmentation method to overcome this limitation. The proposed method is a hybrid method (split-and-merge). First, a watershed algorithm based on pre-processing is used to split the image to form initial segments. Second, the fast lambda-schedule algorithm based on a common boundary length penalty is used to merge the initial segments to obtain the final segmentation. For this experiment, we used GF-1 images with three spatial resolutions: 2 m, 8 m and 16 m. Six different test areas were chosen from the GF-1 images to demonstrate the effectiveness of the improved method, and the objective function (F (v, I)), intrasegment variance (v) and Moran’s index were used to evaluate the segmentation accuracy. The validation results indicated that the improved segmentation method produced satisfactory segmentation results for GF-1 images (average F (v, I) = 0.1064, v = 0.0428 and I = 0.17).

Author(s):  
Chenming Li ◽  
Xiaoyu Qu ◽  
Yao Yang ◽  
Hongmin Gao ◽  
Yongchang Wang ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4979
Author(s):  
Dong Xiao ◽  
Xiwen Liu ◽  
Ba Tuan Le ◽  
Zhiwen Ji ◽  
Xiaoyu Sun

The ore fragment size on the conveyor belt of concentrators is not only the main index to verify the crushing process, but also affects the production efficiency, operation cost and even production safety of the mine. In order to get the size of ore fragments on the conveyor belt, the image segmentation method is a convenient and fast choice. However, due to the influence of dust, light and uneven color and texture, the traditional ore image segmentation methods are prone to oversegmentation and undersegmentation. In order to solve these problems, this paper proposes an ore image segmentation model called RDU-Net (R: residual connection; DU: DUNet), which combines the residual structure of convolutional neural network with DUNet model, greatly improving the accuracy of image segmentation. RDU-Net can adaptively adjust the receptive field according to the size and shape of different ore fragments, capture the ore edge of different shape and size, and realize the accurate segmentation of ore image. The experimental results show that compared with other U-Net and DUNet, the RDU-Net has significantly improved segmentation accuracy, and has better generalization ability, which can fully meet the requirements of ore fragment size detection in the concentrator.


2015 ◽  
Vol 713-715 ◽  
pp. 1589-1592
Author(s):  
Yong Li ◽  
Jing Wen Xu ◽  
Jun Fang Zhao ◽  
Yu Dan Zhao ◽  
Xin Li

Mean shift algorithm is a robust approach toward feature space analysis, which has been wildly used for natural scene image and medical image segmentation. Due to fuzzy boundary and low accuracy of Mean shift segmentation method, this paper puts forward to an improved Mean shift segmentation method of high-resolution remote sensing image based on LBP and Canny features. The results show that this improved Mean shift segmentation access can enhance segmentation accuracy compared to the traditional Mean shift.


2022 ◽  
Vol 14 (2) ◽  
pp. 326
Author(s):  
Ke Wang ◽  
Hainan Chen ◽  
Ligang Cheng ◽  
Jian Xiao

Many studies have focused on performing variational-scale segmentation to represent various geographical objects in high-resolution remote-sensing images. However, it remains a significant challenge to select the most appropriate scales based on the geographical-distribution characteristics of ground objects. In this study, we propose a variational-scale multispectral remote-sensing image segmentation method using spectral indices. Real scenes in remote-sensing images contain different types of land cover with different scales. Therefore, it is difficult to segment images optimally based on the scales of different ground objects. To guarantee image segmentation of ground objects with their own scale information, spectral indices that can be used to enhance some types of land cover, such as green cover and water bodies, were introduced into marker generation for the watershed transformation. First, a vector field model was used to determine the gradient of a multispectral remote-sensing image, and a marker was generated from the gradient. Second, appropriate spectral indices were selected, and the kernel density estimation was used to generate spectral-index marker images based on the analysis of spectral indices. Third, a series of mathematical morphology operations were used to obtain a combined marker image from the gradient and the spectral index markers. Finally, the watershed transformation was used for image segmentation. In a segmentation experiment, an optimal threshold for the spectral-index-marker generation method was identified. Additionally, the influence of the scale parameter was analyzed in a segmentation experiment based on a five-subset dataset. The comparative results for the proposed method, the commonly used watershed segmentation method, and the multiresolution segmentation method demonstrate that the proposed method yielded multispectral remote-sensing images with much better performance than the other methods.


Sign in / Sign up

Export Citation Format

Share Document