Remote Sensing Image Segmentation Method Based on Multi-Level Channel Attention

2020 ◽  
Vol 57 (4) ◽  
pp. 041012
Author(s):  
余帅 Yu Shuai ◽  
汪西莉 Wang Xili
Author(s):  
Chenming Li ◽  
Xiaoyu Qu ◽  
Yao Yang ◽  
Hongmin Gao ◽  
Yongchang Wang ◽  
...  

2019 ◽  
Vol 8 (12) ◽  
pp. 543
Author(s):  
Jun Wang ◽  
Lili Jiang ◽  
Yongji Wang ◽  
Qingwen Qi

Image segmentation technology, which can be used to completely partition a remote sensing image into non-overlapping regions in the image space, plays an indispensable role in high-resolution remote sensing image classification. Recently, the segmentation methods that combine segmenting with merging have attracted researchers’ attention. However, the existing methods ignore the fact that the same parameters must be applied to every segmented geo-object, and fail to consider the homogeneity between adjacent geo-objects. This paper develops an improved remote sensing image segmentation method to overcome this limitation. The proposed method is a hybrid method (split-and-merge). First, a watershed algorithm based on pre-processing is used to split the image to form initial segments. Second, the fast lambda-schedule algorithm based on a common boundary length penalty is used to merge the initial segments to obtain the final segmentation. For this experiment, we used GF-1 images with three spatial resolutions: 2 m, 8 m and 16 m. Six different test areas were chosen from the GF-1 images to demonstrate the effectiveness of the improved method, and the objective function (F (v, I)), intrasegment variance (v) and Moran’s index were used to evaluate the segmentation accuracy. The validation results indicated that the improved segmentation method produced satisfactory segmentation results for GF-1 images (average F (v, I) = 0.1064, v = 0.0428 and I = 0.17).


2022 ◽  
Vol 14 (2) ◽  
pp. 326
Author(s):  
Ke Wang ◽  
Hainan Chen ◽  
Ligang Cheng ◽  
Jian Xiao

Many studies have focused on performing variational-scale segmentation to represent various geographical objects in high-resolution remote-sensing images. However, it remains a significant challenge to select the most appropriate scales based on the geographical-distribution characteristics of ground objects. In this study, we propose a variational-scale multispectral remote-sensing image segmentation method using spectral indices. Real scenes in remote-sensing images contain different types of land cover with different scales. Therefore, it is difficult to segment images optimally based on the scales of different ground objects. To guarantee image segmentation of ground objects with their own scale information, spectral indices that can be used to enhance some types of land cover, such as green cover and water bodies, were introduced into marker generation for the watershed transformation. First, a vector field model was used to determine the gradient of a multispectral remote-sensing image, and a marker was generated from the gradient. Second, appropriate spectral indices were selected, and the kernel density estimation was used to generate spectral-index marker images based on the analysis of spectral indices. Third, a series of mathematical morphology operations were used to obtain a combined marker image from the gradient and the spectral index markers. Finally, the watershed transformation was used for image segmentation. In a segmentation experiment, an optimal threshold for the spectral-index-marker generation method was identified. Additionally, the influence of the scale parameter was analyzed in a segmentation experiment based on a five-subset dataset. The comparative results for the proposed method, the commonly used watershed segmentation method, and the multiresolution segmentation method demonstrate that the proposed method yielded multispectral remote-sensing images with much better performance than the other methods.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1267
Author(s):  
Sijun Dong ◽  
Zhengchao Chen

High-resolution remote sensing image segmentation is a mature application in many industrial-level image applications and it also has military and civil applications. The scene analysis needs to be automated as much as possible with high-resolution remote sensing images. This plays a significant role in environmental disaster monitoring, forestry industry, agricultural farming, urban planning, and road analysis. This study proposes a multi-level feature fusion network (MFNet) that can integrate the multi-level features in the backbone to obtain different types of image information. Finally, the experiments in this study demonstrate that the proposed network can achieve good segmentation results in the Vaihingen and Potsdam datasets. By aiming to achieve a large difference in the scale of the target objects in remote sensing images and achieving a poor recognition result for small objects, a multi-level feature fusion solution is proposed in this study. This investigation improves the recognition results of the remote sensing image segmentation to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document