scholarly journals Start Codon Recognition in Eukaryotic and Archaeal Translation Initiation: A Common Structural Core

2019 ◽  
Vol 20 (4) ◽  
pp. 939 ◽  
Author(s):  
Emmanuelle Schmitt ◽  
Pierre-Damien Coureux ◽  
Auriane Monestier ◽  
Etienne Dubiez ◽  
Yves Mechulam

Understanding molecular mechanisms of ribosomal translation sheds light on the emergence and evolution of protein synthesis in the three domains of life. Universally, ribosomal translation is described in three steps: initiation, elongation and termination. During initiation, a macromolecular complex assembled around the small ribosomal subunit selects the start codon on the mRNA and defines the open reading frame. In this review, we focus on the comparison of start codon selection mechanisms in eukaryotes and archaea. Eukaryotic translation initiation is a very complicated process, involving many initiation factors. The most widespread mechanism for the discovery of the start codon is the scanning of the mRNA by a pre-initiation complex until the first AUG codon in a correct context is found. In archaea, long-range scanning does not occur because of the presence of Shine-Dalgarno (SD) sequences or of short 5′ untranslated regions. However, archaeal and eukaryotic translation initiations have three initiation factors in common: e/aIF1, e/aIF1A and e/aIF2 are directly involved in the selection of the start codon. Therefore, the idea that these archaeal and eukaryotic factors fulfill similar functions within a common structural ribosomal core complex has emerged. A divergence between eukaryotic and archaeal factors allowed for the adaptation to the long-range scanning process versus the SD mediated prepositioning of the ribosome.

2021 ◽  
Vol 118 (6) ◽  
pp. e2017715118
Author(s):  
Christopher P. Lapointe ◽  
Rosslyn Grosely ◽  
Alex G. Johnson ◽  
Jinfan Wang ◽  
Israel S. Fernández ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1–40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.


Author(s):  
Christopher P. Lapointe ◽  
Rosslyn Grosely ◽  
Alex G. Johnson ◽  
Jinfan Wang ◽  
Israel S. Fernández ◽  
...  

ABSTRACTSARS-CoV-2 recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. Using extract-based and reconstitution experiments, we demonstrate that NSP1 inhibits translation initiation on model human and SARS-CoV-2 mRNAs. NSP1 also specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1–40S subunit binding in real time, we demonstrate that eukaryotic translation initiation factors (eIFs) modulate the interaction: NSP1 rapidly and stably associates with most ribosomal pre-initiation complexes in the absence of mRNA, with particular enhancement and inhibition by eIF1 and eIF3j, respectively. Using model mRNAs and an inter-ribosomal-subunit FRET signal, we elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 associates with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.SIGNIFICANCE STATEMENTSARS-CoV-2 is the causative agent of the COVID-19 pandemic. A molecular framework for how SARS-CoV-2 manipulates host cellular machinery to facilitate infection is needed. Here, we integrate biochemical and single-molecule strategies to reveal molecular insight into how NSP1 from SARS-CoV-2 inhibits translation initiation. NSP1 directly binds to the small (40S) subunit of the human ribosome, which is modulated by human initiation factors. Further, NSP1 and mRNA compete with each other to bind the ribosome. Our findings suggest that the presence of NSP1 on the small ribosomal subunit prevents proper accommodation of the mRNA. How this competition disrupts the many steps of translation initiation is an important target for future studies.


2018 ◽  
Vol 47 (1) ◽  
pp. 125-151 ◽  
Author(s):  
Yaser Hashem ◽  
Joachim Frank

Translation initiation in eukaryotes is a highly regulated and rate-limiting process. It results in the assembly and disassembly of numerous transient and intermediate complexes involving over a dozen eukaryotic initiation factors (eIFs). This process culminates in the accommodation of a start codon marking the beginning of an open reading frame at the appropriate ribosomal site. Although this process has been extensively studied by hundreds of groups for nearly half a century, it has been only recently, especially during the last decade, that we have gained deeper insight into the mechanics of the eukaryotic translation initiation process. This advance in knowledge is due in part to the contributions of structural biology, which have shed light on the molecular mechanics underlying the different functions of various eukaryotic initiation factors. In this review, we focus exclusively on the contribution of structural biology to the understanding of the eukaryotic initiation process, a long-standing jigsaw puzzle that is just starting to yield the bigger picture.


2016 ◽  
Vol 44 (9) ◽  
pp. 4252-4265 ◽  
Author(s):  
Vera P. Pisareva ◽  
Andrey V. Pisarev

Abstract During eukaryotic translation initiation, the 43S preinitiation complex (43S PIC), consisting of the 40S ribosomal subunit, eukaryotic initiation factors (eIFs) and initiator tRNA scans mRNA to find an appropriate start codon. Key roles in the accuracy of initiation codon selection belong to eIF1 and eIF1A, whereas the mammalian-specific DHX29 helicase substantially contributes to ribosomal scanning of structured mRNAs. Here, we show that DHX29 stimulates the recognition of the AUG codon but not the near-cognate CUG codon regardless of its nucleotide context during ribosomal scanning. The stimulatory effect depends on the contact between DHX29 and eIF1A. The unique DHX29 N-terminal domain binds to the ribosomal site near the mRNA entrance, where it contacts the eIF1A OB domain. UV crosslinking assays revealed that DHX29 may rearrange eIF1A and eIF2α in key nucleotide context positions of ribosomal complexes. Interestingly, DHX29 impedes the 48S initiation complex formation in the absence of eIF1A perhaps due to forming a physical barrier that prevents the 43S PIC from loading onto mRNA. Mutational analysis allowed us to split the mRNA unwinding and codon selection activities of DHX29. Thus, DHX29 is another example of an initiation factor contributing to start codon selection.


Sign in / Sign up

Export Citation Format

Share Document