scholarly journals Molecular Players of EF-hand Containing Calcium Signaling Event in Plants

2019 ◽  
Vol 20 (6) ◽  
pp. 1476 ◽  
Author(s):  
Tapan Mohanta ◽  
Dhananjay Yadav ◽  
Abdul Khan ◽  
Abeer Hashem ◽  
Elsayed Abd_Allah ◽  
...  

Ca2+ is a universal second messenger that plays a pivotal role in diverse signaling mechanisms in almost all life forms. Since the evolution of life from an aquatic to a terrestrial environment, Ca2+ signaling systems have expanded and diversified enormously. Although there are several Ca2+ sensing molecules found in a cell, EF-hand containing proteins play a principal role in calcium signaling event in plants. The major EF-hand containing proteins are calmodulins (CaMs), calmodulin like proteins (CMLs), calcineurin B-like (CBL) and calcium dependent protein kinases (CDPKs/CPKs). CaMs and CPKs contain calcium binding conserved D-x-D motifs in their EF-hands (one motif in each EF-hand) whereas CMLs contain a D-x3-D motif in the first and second EF-hands that bind the calcium ion. Calcium signaling proteins form a complex interactome network with their target proteins. The CMLs are the most primitive calcium binding proteins. During the course of evolution, CMLs are evolved into CaMs and subsequently the CaMs appear to have merged with protein kinase molecules to give rise to calcium dependent protein kinases with distinct and multiple new functions. Ca2+ signaling molecules have evolved in a lineage specific manner with several of the calcium signaling genes being lost in the monocot lineage.

2012 ◽  
Vol 447 (2) ◽  
pp. 291-299 ◽  
Author(s):  
Marie Boudsocq ◽  
Marie-Jo Droillard ◽  
Leslie Regad ◽  
Christiane Laurière

CDPKs (calcium-dependent protein kinases), which contain both calmodulin-like calcium binding and serine/threonine protein kinase domains, are only present in plants and some protozoans. Upon activation by a stimulus, they transduce the signal through phosphorylation cascades to induce downstream responses, including transcriptional regulation. To understand the functional specificities of CDPKs, 14 Arabidopsis CPKs (CDPKs in plants) representative of the three main subgroups were characterized at the biochemical level, using HA (haemagglutinin)-tagged CPKs expressed in planta. Most of them were partially or mainly associated with membranes, in agreement with acylation predictions. Importantly, CPKs displayed highly variable calcium-dependences for their kinase activities: seven CPKs from subgroups 1 and 2 were clearly sensitive to calcium with different intensities, whereas six CPKs from subgroup 3 exhibited low or no calcium sensitivity to two generic substrates. Interestingly, this apparent calcium-independence correlated with significant alterations in the predicted EF-hands of these kinases, although they all bound calcium. The noticeable exception, CPK25, was calcium-independent owing to the absence of functional EF-hands. Taken together, the results of the present study suggest that calcium binding differentially affects CDPK isoforms that may be activated by distinct molecular mechanisms.


2018 ◽  
Vol 34 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Hemant B Kardile ◽  
◽  
Vikrant ◽  
Nirmal Kant Sharma ◽  
Ankita Sharma ◽  
...  

2007 ◽  
Vol 19 (10) ◽  
pp. 3019-3036 ◽  
Author(s):  
Sai-Yong Zhu ◽  
Xiang-Chun Yu ◽  
Xiao-Jing Wang ◽  
Rui Zhao ◽  
Yan Li ◽  
...  

2002 ◽  
Vol 277 (25) ◽  
pp. 22407-22413 ◽  
Author(s):  
Jean-Claude Gevrey ◽  
Martine Cordier-Bussat ◽  
Eric Némoz-Gaillard ◽  
Jean-Alain Chayvialle ◽  
Jacques Abello

Sign in / Sign up

Export Citation Format

Share Document