scholarly journals Changes in the Soil Microbiome in Eggplant Monoculture Revealed by High-Throughput Illumina MiSeq Sequencing as Influenced by Raw Garlic Stalk Amendment

2019 ◽  
Vol 20 (9) ◽  
pp. 2125 ◽  
Author(s):  
Muhammad Imran Ghani ◽  
Ahmad Ali ◽  
Muhammad Jawaad Atif ◽  
Muhammad Ali ◽  
Bakht Amin ◽  
...  

The incorporation of plant residues into soil can be considered a keystone sustainability factor in improving soil structure function. However, the effects of plant residue addition on the soil microbial communities involved in biochemical cycles and abiotic stress phenomena are poorly understood. In this study, experiments were conducted to evaluate the role of raw garlic stalk (RGS) amendment in avoiding monoculture-related production constraints by studying the changes in soil chemical properties and microbial community structures. RGS was applied in four different doses, namely the control (RGS0), 1% (RGS1), 3% (RGS2), and 5% (RGS3) per 100 g of soil. The RGS amendment significantly increased soil electrical conductivity (EC), N, P, K, and enzyme activity. The soil pH significantly decreased with RGS application. High-throughput Illumina MiSeq sequencing revealed significant alterations in bacterial community structures in response to RGS application. Among the 23 major taxa detected, Anaerolineaceae, Acidobacteria, and Cyanobacteria exhibited an increased abundance level. RGS2 increased some bacteria reported to be beneficial including Acidobacteria, Bacillus, and Planctomyces (by 42%, 64%, and 1% respectively). Furthermore, internal transcribed spacer (ITS) fungal regions revealed significant diversity among the different treatments, with taxa such as Chaetomium (56.2%), Acremonium (4.3%), Fusarium (4%), Aspergillus (3.4%), Sordariomycetes (3%), and Plectosphaerellaceae (2%) showing much abundance. Interestingly, Coprinellus (14%) was observed only in RGS-amended soil. RGS treatments effectively altered soil fungal community structures and reduced certain known pathogenic fungal genera, i.e., Fusarium and Acremonium. The results of the present study suggest that RGS amendment potentially affects the microbial community structures that probably affect the physiological and morphological attributes of eggplant under a plastic greenhouse vegetable cultivation system (PGVC) in monoculture.

2021 ◽  
Vol 13 (13) ◽  
pp. 7358
Author(s):  
Dong-Hyun Kim ◽  
Hyun-Sik Yun ◽  
Young-Saeng Kim ◽  
Jong-Guk Kim

This study analyzed the microbial community metagenomically to determine the cause of the functionality of a livestock wastewater treatment facility that can effectively remove pollutants, such as ammonia and hydrogen sulfide. Illumina MiSeq sequencing was used in analyzing the composition and structure of the microbial community, and the 16S rRNA gene was used. Through Illumina MiSeq sequencing, information such as diversity indicators as well as the composition and structure of microbial communities present in the livestock wastewater treatment facility were obtained, and differences between microbial communities present in the investigated samples were compared. The number of reads, operational taxonomic units, and species richness were lower in influent sample (NLF), where the wastewater enters, than in effluent sample (NL), in which treated wastewater is found. This difference was greater in June 2019 than in January 2020, and the removal rates of ammonia (86.93%) and hydrogen sulfide (99.72%) were also higher in June 2019. In both areas, the community composition was similar in January 2020, whereas the influent sample (NLF) and effluent sample (NL) areas in June 2019 were dominated by Proteobacteria (76.23%) and Firmicutes (67.13%), respectively. Oleiphilaceae (40.89%) and Thioalkalibacteraceae (12.91%), which are related to ammonia and hydrogen sulfide removal, respectively, were identified in influent sample (NLF) in June 2019. They were more abundant in June 2019 than in January 2020. Therefore, the functionality of the livestock wastewater treatment facility was affected by characteristics, including the composition of the microbial community. Compared to Illumina MiSeq sequencing, fewer species were isolated and identified in both areas using culture-based methods, suggesting Illumina MiSeq sequencing as a powerful tool to determine the relevance of microbial communities for pollutant removal.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242209
Author(s):  
Muhammad Azeem ◽  
Lauren Hale ◽  
Jonathan Montgomery ◽  
David Crowley ◽  
Milton E. McGiffen

We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6–56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.


Sign in / Sign up

Export Citation Format

Share Document