scholarly journals Deciphering the Origin and Evolution of the X1X2Y System in Two Closely-Related Oplegnathus Species (Oplegnathidae and Centrarchiformes)

2019 ◽  
Vol 20 (14) ◽  
pp. 3571 ◽  
Author(s):  
Dongdong Xu ◽  
Alexandr Sember ◽  
Qihui Zhu ◽  
Ezequiel Aguiar de Oliveira ◽  
Thomas Liehr ◽  
...  

Oplegnathus fasciatus and O. punctatus (Teleostei: Centrarchiformes: Oplegnathidae), are commercially important rocky reef fishes, endemic to East Asia. Both species present an X1X2Y sex chromosome system. Here, we investigated the evolutionary forces behind the origin and differentiation of these sex chromosomes, with the aim to elucidate whether they had a single or convergent origin. To achieve this, conventional and molecular cytogenetic protocols, involving the mapping of repetitive DNA markers, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) were applied. Both species presented similar 2n, karyotype structure and hybridization patterns of repetitive DNA classes. 5S rDNA loci, besides being placed on the autosomal pair 22, resided in the terminal region of the long arms of both X1 chromosomes in females, and on the X1 and Y chromosomes in males. Furthermore, WCP experiments with a probe derived from the Y chromosome of O. fasciatus (OFAS-Y) entirely painted the X1 and X2 chromosomes in females and the X1, X2, and Y chromosomes in males of both species. CGH failed to reveal any sign of sequence differentiation on the Y chromosome in both species, thereby suggesting the shared early stage of neo-Y chromosome differentiation. Altogether, the present findings confirmed the origin of the X1X2Y sex chromosomes via Y-autosome centric fusion and strongly suggested their common origin.

Author(s):  
Catherine L. Peichel ◽  
Shaugnessy R. McCann ◽  
Joseph A. Ross ◽  
Alice F. S. Naftaly ◽  
James R. Urton ◽  
...  

AbstractHeteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to rapid degeneration of the Y chromosome. However, these early stages of degeneration are not well understood, as complete Y chromosome sequence assemblies have only been generated across a handful of taxa with ancient sex chromosomes. Here we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old. Our previous work identified that the non-recombining region between the X and the Y spans ∼17.5 Mb on the X chromosome. Here, we combined long-read PacBio sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome clones from a bacterial artificial chromosome (BAC) library. We found three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The young threespine stickleback Y shows convergence with older sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we found no evidence for large amplicons found in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). Together, our work shows that the same evolutionary forces shaping older sex chromosomes can cause remarkably rapid changes in the overall genetic architecture on young Y chromosomes.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 221-233 ◽  
Author(s):  
Bryant F McAllister ◽  
Brian Charlesworth

Abstract Sex chromosomes are generally morphologically and functionally distinct, but the evolutionary forces that cause this differentiation are poorly understood. Drosophila americana americana was used in this study to examine one aspect of sex chromosome evolution, the degeneration of nonrecombining Y chromosomes. The primary X chromosome of D. a. americana is fused with a chromosomal element that was ancestrally an autosome, causing this homologous chromosomal pair to segregate with the sex chromosomes. Sequence variation at the Alcohol Dehydrogenase (Adh) gene was used to determine the pattern of nucleotide variation on the neo-sex chromosomes in natural populations. Sequences of Adh were obtained for neo-X and neo-Y chromosomes of D. a. americana, and for Adh of D. a. texana, in which it is autosomal. No significant sequence differentiation is present between the neo-X and neo-Y chromosomes of D. a. americana or the autosomes of D. a. texana. There is a significantly lower level of sequence diversity on the neo-Y chromosome relative to the neo-X in D. a. americana. This reduction in variability on the neo-Y does not appear to have resulted from a selective sweep. Coalescent simulations of the evolutionary transition of an autosome into a Y chromosome indicate there may be a low level of recombination between the neo-X and neo-Y alleles of Adh and that the effective population size of this chromosome may have been reduced below the expected value of 25% of the autosomal effective size, possibly because of the effects of background selection or sexual selection.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1105-1113 ◽  
Author(s):  
Alicia Felip ◽  
Atushi Fujiwara ◽  
William P Young ◽  
Paul A Wheeler ◽  
Marc Noakes ◽  
...  

Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.Key words: sex chromosomes, sex markers, cytogenetics, rainbow trout, fish.


2020 ◽  
Vol 160 (5) ◽  
pp. 264-271
Author(s):  
Juana Gutierrez ◽  
Gael Aleix-Mata ◽  
Juan A. Marchal ◽  
María Arroyo ◽  
Riccardo Castiglia ◽  
...  

The Talpidae family has a highly stable karyotype. Most of the chromosome studies in this mammal group, however, employed classical cytogenetic techniques. Molecular cytogenetic analyses are still scarce and, for example, no repeated DNA sequences have been described to date. In this work, we used sequence analysis, chromosomal mapping of a LINE1 retroelement sequence, as well as chromosome painting with a whole Y chromosome probe of T. occidentalis to compare the karyotypes of 3 species of the genus Talpa (T. occidentalis, T. romana, and T. aquitania). Our results demonstrate that in Talpa genomes LINE1 sequences are widely distributed on all chromosomes but are enriched in pericentromeric C-band-positive regions. In addition, these LINE1 accumulate on the Y chromosomes of the 3 Talpa species regardless of their euchromatic or heterochromatic condition. Chromosome painting shows that the Y chromosomes in these 3 species are highly conserved. Interestingly, they share sequences with heterochromatic blocks on chromosome pairs 14 and 16 and, to a lesser degree, with the pericentromeric regions of other autosomes. Together, our analyses demonstrate that the repetitive DNA content of chromosomes from Talpa species is highly conserved.


2019 ◽  
Vol 116 (38) ◽  
pp. 19031-19036 ◽  
Author(s):  
Iulia Darolti ◽  
Alison E. Wright ◽  
Benjamin A. Sandkam ◽  
Jake Morris ◽  
Natasha I. Bloch ◽  
...  

Once recombination is halted between the X and Y chromosomes, sex chromosomes begin to differentiate and transition to heteromorphism. While there is a remarkable variation across clades in the degree of sex chromosome divergence, far less is known about the variation in sex chromosome differentiation within clades. Here, we combined whole-genome and transcriptome sequencing data to characterize the structure and conservation of sex chromosome systems across Poeciliidae, the livebearing clade that includes guppies. We found that the Poecilia reticulata XY system is much older than previously thought, being shared not only with its sister species, Poecilia wingei, but also with Poecilia picta, which diverged roughly 20 million years ago. Despite the shared ancestry, we uncovered an extreme heterogeneity across these species in the proportion of the sex chromosome with suppressed recombination, and the degree of Y chromosome decay. The sex chromosomes in P. reticulata and P. wingei are largely homomorphic, with recombination in the former persisting over a substantial fraction. However, the sex chromosomes in P. picta are completely nonrecombining and strikingly heteromorphic. Remarkably, the profound degradation of the ancestral Y chromosome in P. picta is counterbalanced by the evolution of functional chromosome-wide dosage compensation in this species, which has not been previously observed in teleost fish. Our results offer important insight into the initial stages of sex chromosome evolution and dosage compensation.


Genome ◽  
1998 ◽  
Vol 41 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Y Hi Zhang ◽  
Veronica S Stilio ◽  
Farah Rehman ◽  
Amy Avery ◽  
David Mulcahy ◽  
...  

Sex determination in plants has been most thoroughly investigated in Silene latifolia, a dioecious species possessing heteromorphic sex chromosomes. We have identified several new Y chromosome linked RAPD markers and converted these to more reliable sequence characterized amplified region (SCAR) markers by cloning the RAPD fragments and developing longer primers. Of the primer pairs for seven SCARs, five amplify a single, unique fragment from the DNA of male S. latifolia. Two sets of primers also amplify additional fragments common to males and females. Homology between the X and Y chromosomes is sufficient to allow the amplification of fragments from females under less stringent PCR conditions. Five of the SCARs also distinguish between the sexes of closely related dioecious taxa of the section Elisanthe, but not between the sexes of distantly related dioecious species. These markers will be useful for continued investigations into the evolution of sex, phylogenetic relationships among taxa, and population dynamics of sex ratios in the genus Silene.Key words: Melandrium, RAPDs, sex chromosomes, SCARs.


2020 ◽  
Author(s):  
Benjamin A Sandkam ◽  
Pedro Almeida ◽  
Iulia Darolti ◽  
Benjamin Furman ◽  
Wouter van der Bijl ◽  
...  

AbstractSex chromosomes form once recombination is halted between the X and Y chromosomes. This loss of recombination quickly depletes Y chromosomes of functional content and genetic variation, which is thought to severely limit their potential to generate adaptive diversity. We examined Y diversity in Poecilia parae, where males occur as one of five discrete morphs, all of which shoal together in natural populations where morph frequency has been stable for over 50 years. Each morph utilizes different complex reproductive strategies, and differ dramatically from each other in color, body size, and mating behavior. Remarkably, morph phenotype is passed perfectly from father to son, indicating there are five Y haplotypes segregating in the species, each of which encodes the complex male morph characteristics. Using linked-read sequencing on multiple P. parae females and males of all five morphs from natural populations, we found that the genetic architecture of the male morphs evolved on the Y chromosome long after recombination suppression had occurred with the X. Comparing Y chromosomes between each of the morphs revealed that although the Ys of the three minor morphs that differ predominantly in color are highly similar, there are substantial amounts of unique genetic material and divergence between the Ys of the three major morphs that differ in reproductive strategy, body size and mating behavior. Taken together, our results reveal the extraordinary ability of evolution to overcome the constraints of recombination loss to generate extreme diversity resulting in five discrete Y chromosomes that control complex reproductive strategies.Significance StatementThe loss of recombination on the Y chromosome is thought to limit the adaptive potential of this unique genomic region. Despite this, we describe an extraordinary case of Y chromosome adaptation in Poecilia parae. This species contains five co-occurring male morphs, all of which are Y-linked, and which differ in reproductive strategy, body size, coloration, and mating behavior. The five Y-linked male morphs of P. parae evolved after recombination was halted on the Y, resulting in five unique Y chromosomes within one species. Our results reveal the surprising magnitude to which non-recombining regions can generate adaptive diversity and have important implications for the evolution of sex chromosomes and the genetic control of sex-linked diversity.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009438
Author(s):  
Alison H. Nguyen ◽  
Doris Bachtrog

Sex-specific differences in lifespan are prevalent across the tree of life and influenced by heteromorphic sex chromosomes. In species with XY sex chromosomes, females often outlive males. Males and females can differ in their overall repeat content due to the repetitive Y chromosome, and repeats on the Y might lower survival of the heterogametic sex (toxic Y effect). Here, we take advantage of the well-assembled young Y chromosome of Drosophila miranda to study the sex-specific dynamics of chromatin structure and repeat expression during aging in male and female flies. Male D. miranda have about twice as much repetitive DNA compared to females, and live shorter than females. Heterochromatin is crucial for silencing of repetitive elements, yet old D. miranda flies lose H3K9me3 modifications in their pericentromere, with heterochromatin loss being more severe during aging in males than females. Satellite DNA becomes de-repressed more rapidly in old vs. young male flies relative to females. In contrast to what is observed in D. melanogaster, we find that transposable elements (TEs) are expressed at higher levels in male D. miranda throughout their life. We show that epigenetic silencing via heterochromatin formation is ineffective on the TE-rich neo-Y chromosome, presumably due to active transcription of a large number of neo-Y linked genes, resulting in up-regulation of Y-linked TEs already in young males. This is consistent with an interaction between the evolutionary age of the Y chromosome and the genomic effects of aging. Our data support growing evidence that “toxic Y chromosomes” can diminish male fitness and a reduction in heterochromatin can contribute to sex-specific aging.


Reproduction ◽  
2008 ◽  
Vol 135 (2) ◽  
pp. 241-252 ◽  
Author(s):  
Michelle Alton ◽  
Mau Pan Lau ◽  
Michele Villemure ◽  
Teruko Taketo

Sexual differentiation of the germ cells follows gonadal differentiation, which is determined by the presence or the absence of the Y-chromosome. Consequently, oogenesis and spermatogenesis take place in the germ cells with XX and XY sex chromosomal compositions respectively. It is unclear how sexual dimorphic regulation of meiosis is associated with the sex-chromosomal composition. In the present study, we examined the behavior of the sex chromosomes in the oocytes of the B6.YTIRsex-reversed female mouse, in comparison with XO and XX females. As the sex chromosomes fail to pair in both XY and XO oocytes during meiotic prophase, we anticipated that the pairing failure may lead to excessive oocyte loss. However, the total number of germ cells, identified by immunolabeling of germ cell nuclear antigen 1 (GCNA1), did not differ between XY and XX ovaries or XO and XX ovaries up to the day of delivery. The progression of meiotic prophase, assessed by immunolabeling of synaptonemal complex components, was also similar between the two genotypes of ovaries. These observations suggest that the failure in sex-chromosome pairing is not sufficient to cause oocyte loss. On the other hand, labeling of phosphorylated histone γH2AX, known to be associated with asynapsis and transcriptional repression, was seen over the X-chromosome but not over the Y-chromosome in the majority of XY oocytes at the pachytene stage. For comparison, γH2AX labeling was seen only in the minority of XX oocytes at the same stage. We speculate that the transcriptional activity of sex chromosomes in the XY oocyte may be incompatible with ooplasmic maturation.


Sign in / Sign up

Export Citation Format

Share Document