scholarly journals The behavior of the X- and Y-chromosomes in the oocyte during meiotic prophase in the B6.YTIR sex-reversed mouse ovary

Reproduction ◽  
2008 ◽  
Vol 135 (2) ◽  
pp. 241-252 ◽  
Author(s):  
Michelle Alton ◽  
Mau Pan Lau ◽  
Michele Villemure ◽  
Teruko Taketo

Sexual differentiation of the germ cells follows gonadal differentiation, which is determined by the presence or the absence of the Y-chromosome. Consequently, oogenesis and spermatogenesis take place in the germ cells with XX and XY sex chromosomal compositions respectively. It is unclear how sexual dimorphic regulation of meiosis is associated with the sex-chromosomal composition. In the present study, we examined the behavior of the sex chromosomes in the oocytes of the B6.YTIRsex-reversed female mouse, in comparison with XO and XX females. As the sex chromosomes fail to pair in both XY and XO oocytes during meiotic prophase, we anticipated that the pairing failure may lead to excessive oocyte loss. However, the total number of germ cells, identified by immunolabeling of germ cell nuclear antigen 1 (GCNA1), did not differ between XY and XX ovaries or XO and XX ovaries up to the day of delivery. The progression of meiotic prophase, assessed by immunolabeling of synaptonemal complex components, was also similar between the two genotypes of ovaries. These observations suggest that the failure in sex-chromosome pairing is not sufficient to cause oocyte loss. On the other hand, labeling of phosphorylated histone γH2AX, known to be associated with asynapsis and transcriptional repression, was seen over the X-chromosome but not over the Y-chromosome in the majority of XY oocytes at the pachytene stage. For comparison, γH2AX labeling was seen only in the minority of XX oocytes at the same stage. We speculate that the transcriptional activity of sex chromosomes in the XY oocyte may be incompatible with ooplasmic maturation.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1105-1113 ◽  
Author(s):  
Alicia Felip ◽  
Atushi Fujiwara ◽  
William P Young ◽  
Paul A Wheeler ◽  
Marc Noakes ◽  
...  

Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.Key words: sex chromosomes, sex markers, cytogenetics, rainbow trout, fish.


2019 ◽  
Vol 116 (38) ◽  
pp. 19031-19036 ◽  
Author(s):  
Iulia Darolti ◽  
Alison E. Wright ◽  
Benjamin A. Sandkam ◽  
Jake Morris ◽  
Natasha I. Bloch ◽  
...  

Once recombination is halted between the X and Y chromosomes, sex chromosomes begin to differentiate and transition to heteromorphism. While there is a remarkable variation across clades in the degree of sex chromosome divergence, far less is known about the variation in sex chromosome differentiation within clades. Here, we combined whole-genome and transcriptome sequencing data to characterize the structure and conservation of sex chromosome systems across Poeciliidae, the livebearing clade that includes guppies. We found that the Poecilia reticulata XY system is much older than previously thought, being shared not only with its sister species, Poecilia wingei, but also with Poecilia picta, which diverged roughly 20 million years ago. Despite the shared ancestry, we uncovered an extreme heterogeneity across these species in the proportion of the sex chromosome with suppressed recombination, and the degree of Y chromosome decay. The sex chromosomes in P. reticulata and P. wingei are largely homomorphic, with recombination in the former persisting over a substantial fraction. However, the sex chromosomes in P. picta are completely nonrecombining and strikingly heteromorphic. Remarkably, the profound degradation of the ancestral Y chromosome in P. picta is counterbalanced by the evolution of functional chromosome-wide dosage compensation in this species, which has not been previously observed in teleost fish. Our results offer important insight into the initial stages of sex chromosome evolution and dosage compensation.


2021 ◽  
Author(s):  
Michael John O'Neill ◽  
Natali Sobel Naveh ◽  
Robert Foley ◽  
Katelyn DeNegre ◽  
Tristan Evans ◽  
...  

In mammals, the X and Y chromosomes share only small regions of homology called pseudo-autosomal regions (PAR) where pairing and recombination in spermatocytes can occur. Consequently, the sex chromosomes remain largely unsynapsed during meiosis I and are sequestered in a nuclear compartment known as the XY body where they are transcriptionally silenced in a process called meiotic sex chromosome inactivation (MSCI). MSCI mirrors meiotic silencing of unpaired chromatin (MSUC), the sequestration and transcriptional repression of unpaired DNA observed widely in eukaryotes. MSCI is initiated by the assembly of the axial elements of the synaptonemal complex (SC) comprising the structural proteins SYCP2 and SYCP3 followed by the ordered recruitment of DNA Damage Response (DDR) factors to effect gene silencing. However, the precise mechanism of how unsynapsed chromatin is detected in meiocytes is poorly understood. The sex chromosomes in eutherian mammals harbor multiple clusters of SYCP3-like amplicons comprising the Xlr gene family, only a handful of which have been functionally studied. We used a shRNA-transgenic mouse model to create a deficiency in the testis-expressed multicopy Xlr3 genes to investigate their role in spermatogenesis. Here we show that knockdown of Xlr3 in mice leads to spermatogenic defects and a skewed sex ratio that can be traced to MSCI breakdown. Spermatocytes deficient in XLR3 form the XY body and the SC axial elements therein, but are compromised in their ability to recruit DDR components to the XY body.


2019 ◽  
Author(s):  
Paris Veltsos ◽  
Nicolas Rodrigues ◽  
Tania Studer ◽  
Wen-Juan Ma ◽  
Roberto Sermier ◽  
...  

AbstractThe canonical model of sex-chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (non-recombinant Y haplotypes) coexist with both XY° males with proto-Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex-determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study shows no effect of sex-chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs seems to result from the differential expression of autosomal genes rather than sex-linked SA genes. Among-male variance in sex-chromosome differentiation is better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X-Y recombination in XY females), independent of sex-linked SA genes.Impact SummaryHumans, like other mammals, present highly differentiated sex chromosomes, with a large, gene-rich X chromosome contrasting with a small, gene-poor Y chromosome. This differentiation results from a process that started approximately 160 Mya, when the Y first stopped recombining with the X. How and why this happened, however, remain controversial. According to the canonical model, the process was initiated by sexually antagonistic selection; namely, selection on the proto-Y chromosome for alleles that were beneficial to males but detrimental to females. The arrest of XY recombination then allowed such alleles to be only transmitted to sons, not to daughters. Although appealing and elegant, this model can no longer be tested in mammals, as it requires a sex-chromosome system at an incipient stage of evolution. Here we focus on a frog that displays within-population polymorphism is sex-chromosome differentiation, where XY males with differentiated chromosomes coexist with XX males lacking Y chromosomes. We find no effect of sex-chromosome differentiation on male phenotype or mating success, opposing expectations from the standard model. Sex linked genes do not seem to have a disproportionate effect on sexual dimorphism. From our results, sexually antagonistic genes show no association with sex-chromosome differentiation in frogs, which calls for alternative models of sex-chromosome evolution.


2018 ◽  
Author(s):  
George Sandler ◽  
Felix E.G. Beaudry ◽  
Spencer C.H. Barrett ◽  
Stephen I. Wright

AbstractThe evolution of sex chromosomes is usually considered to be driven by sexually antagonistic selection in the diploid phase. However, selection during the haploid gametic phase of the lifecycle has recently received theoretical attention as possibly playing a central role in sex chromosome evolution, especially in plants where gene expression in the haploid phase is extensive. In particular, male-specific haploid selection might favour the linkage of pollen beneficial alleles to male sex determining regions on incipient Y chromosomes. This linkage might then allow such alleles to further specialise for the haploid phase. Purifying haploid selection is also expected to slow the degeneration of Y-linked genes expressed in the haploid phase. Here, we examine the evolution of gene expression in flower buds and pollen of two species of Rumex to test for signatures of haploid selection acting during plant sex chromosome evolution. We find that genes with high ancestral pollen expression bias occur more often on sex chromosomes than autosomes and that genes on the Y chromosome are more likely to become enriched for pollen expression bias. We also find that genes with low expression in pollen are more likely to be lost from the Y chromosome. Our results suggest that sex-specific haploid selection during the gametophytic stage of the lifecycle may be a major contributor to several features of plant sex chromosome evolution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sharvani Mahadevaraju ◽  
Justin M. Fear ◽  
Miriam Akeju ◽  
Brian J. Galletta ◽  
Mara M. L. S. Pinheiro ◽  
...  

AbstractGiven their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.


Author(s):  
Catherine L. Peichel ◽  
Shaugnessy R. McCann ◽  
Joseph A. Ross ◽  
Alice F. S. Naftaly ◽  
James R. Urton ◽  
...  

AbstractHeteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to rapid degeneration of the Y chromosome. However, these early stages of degeneration are not well understood, as complete Y chromosome sequence assemblies have only been generated across a handful of taxa with ancient sex chromosomes. Here we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old. Our previous work identified that the non-recombining region between the X and the Y spans ∼17.5 Mb on the X chromosome. Here, we combined long-read PacBio sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome clones from a bacterial artificial chromosome (BAC) library. We found three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The young threespine stickleback Y shows convergence with older sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we found no evidence for large amplicons found in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). Together, our work shows that the same evolutionary forces shaping older sex chromosomes can cause remarkably rapid changes in the overall genetic architecture on young Y chromosomes.


2010 ◽  
Vol 22 (9) ◽  
pp. 23
Author(s):  
F. Grutzner ◽  
A. Casey ◽  
T. Daish

Monotremes feature an extraordinarily complex sex chromosome system which shares extensive homology with bird sex chromosomes but no homology to sex chromosomes of other mammals (1,2,3). At meiotic prophase I the ten sex chromosomes in platypus (nine in echidna) assemble in a sex chromosome chain. We previously identified the multiple sex chromosomes in platypus and echidna that form the meiotic chain in males (1,2,4). We showed that sex chromosomes assembly in the chain in a specific order (5) and that they segregate alternately (1). In secondary spermatocytes we observed clustering of X and Y chromosomes in sperm (6). Our current research investigates the formation of the synaptonemal complex, recombination and meiotic silencing of monotreme sex chromosomes. Meiotic sex chromosome inactivation (MSCI) has been observed in eutherian mammals, marsupials and birds but has so far not been investigated experimentally in monotremes. We found that during pachytene the X5Y5 end of the chain closely associates with the nucleolus and accumulates repressive chromatin marks (e.g. histone variant mH2A). In contrast to the differential accumulation of mH2A we observe extensive loading of the cohesin SMC3 on sex chromosomes in particular during the pachytene stage of meiotic prophase I. We have also used markers of active transcription and gene expression analysis to investigate gene activity in platypus meiotic cells. I will discuss how these findings contribute to our current understanding of the meiotic organisation of monotreme sex chromosomes and the evolution of MSCI in birds and mammals. (1) Grützner et al. (2004), Nature 432: 913–917.(2) Rens et al. (2007), Genome Biology 16;8(11): R243.(3) Veyrunes et al. (2008), Genome Research, 18(6): 995–1004.(4) Rens et al. (2004), Proceedings of the National Academy of Sciences USA. 101 (46): 16 257–16 261.(5) Daish et al. (2009), Reprod Fertil Dev. 21(8): 976–84.(6) Tsend-Ayush et al. (2009), Chromosoma 118(1): 53–69.


If I adhere strictly to the title proposed for me and speak only of the genetic activity of the sex chromosomes in germ cells, there is very little to say. The evidence is necessarily indirect and includes, first, examples of differential behaviour of germ cells of different sex chromosome constitution in situations where competitive proliferation is a possibility, as in some mosaics and chimaeras; and secondly, exceptional species in which the sex chromosome constitution is normally different in germ cells and soma. The species concerned are all mammals. An instance of the first kind is provided by observations made on a 39,X /41,XYY mosaic mouse discovered by chance in the course of an irradiation experiment (Evans, Ford & Searle 1969). All the spermatogonia and spermatocytes examined contained 41 chromosomes, including two Y chromosomes, whereas bone marrow (the only other tissue examined) was mosaic, the probability of difference being due to sampling error being very low. The question, then, was whether the failure to detect mosaicism among the germ cells was a consequence of chance exclusion of the 39, X cell type from the germ line during development, or of differential proliferation and/or survival of 41,XYY germ cells in the testicular environment. The latter interpretation was favoured on the grounds: (1) A 39,X /41,XYY mosaic is likely to have originated by non-disjunction of the Y chromosome at the first cleavage division of a 40,XY zygote, since other theoretically possible modes of origin would require the combination of rare events or other implausible assumptions. (2) Primordial germ cells of the constitution 39, X are capable of reaching the developing gonad and subsequently forming functional oocytes as evidenced by the fertility of 39, X female mice (Russell, Russell & Gower 1959). (3) Nearly all half-and-half coat colour mosaic mutants are also germ cell mosaics (Russell 1964), implying that when two distinct cell lines are present very early in development both lines are likely to be represented among the germ cells


Sign in / Sign up

Export Citation Format

Share Document