scholarly journals FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy

2020 ◽  
Vol 21 (18) ◽  
pp. 6492 ◽  
Author(s):  
Jonathan R. Hughes ◽  
Jason L. Parsons

FLASH radiotherapy is the delivery of ultra-high dose rate radiation several orders of magnitude higher than what is currently used in conventional clinical radiotherapy, and has the potential to revolutionize the future of cancer treatment. FLASH radiotherapy induces a phenomenon known as the FLASH effect, whereby the ultra-high dose rate radiation reduces the normal tissue toxicities commonly associated with conventional radiotherapy, while still maintaining local tumor control. The underlying mechanism(s) responsible for the FLASH effect are yet to be fully elucidated, but a prominent role for oxygen tension and reactive oxygen species production is the most current valid hypothesis. The FLASH effect has been confirmed in many studies in recent years, both in vitro and in vivo, with even the first patient with T-cell cutaneous lymphoma being treated using FLASH radiotherapy. However, most of the studies into FLASH radiotherapy have used electron beams that have low tissue penetration, which presents a limitation for translation into clinical practice. A promising alternate FLASH delivery method is via proton beam therapy, as the dose can be deposited deeper within the tissue. However, studies into FLASH protons are currently sparse. This review will summarize FLASH radiotherapy research conducted to date and the current theories explaining the FLASH effect, with an emphasis on the future potential for FLASH proton beam therapy.

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 181
Author(s):  
Loredana G. Marcu ◽  
Eva Bezak ◽  
Dylan D. Peukert ◽  
Puthenparampil Wilson

FLASH radiotherapy, or the administration of ultra-high dose rate radiotherapy, is a new radiation delivery method that aims to widen the therapeutic window in radiotherapy. Thus far, most in vitro and in vivo results show a real potential of FLASH to offer superior normal tissue sparing compared to conventionally delivered radiation. While there are several postulations behind the differential behaviour among normal and cancer cells under FLASH, the full spectra of radiobiological mechanisms are yet to be clarified. Currently the number of devices delivering FLASH dose rate is few and is mainly limited to experimental and modified linear accelerators. Nevertheless, FLASH research is increasing with new developments in all the main areas: radiobiology, technology and clinical research. This paper presents the current status of FLASH radiotherapy with the aforementioned aspects in mind, but also to highlight the existing challenges and future prospects to overcome them.


2021 ◽  
Vol 161 ◽  
pp. S1353-S1354
Author(s):  
M. Gutiérrez Ruiz ◽  
R. Astudillo Olalla ◽  
A.L. Rivero ◽  
P. érez ◽  
J.T. Anchuelo Latorre ◽  
...  

2020 ◽  
Vol 47 (5) ◽  
pp. 2242-2253 ◽  
Author(s):  
Samuel Ruiz‐Arrebola ◽  
Rosa Fabregat‐Borrás ◽  
Eduardo Rodríguez ◽  
Manuel Fernández‐Montes ◽  
Mercedes Pérez‐Macho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document