scholarly journals Quantitative Proteomic Profiling of Small Molecule Treated Mesenchymal Stem Cells Using Chemical Probes

2020 ◽  
Vol 22 (1) ◽  
pp. 160
Author(s):  
Jerran Santos ◽  
Sibasish Dolai ◽  
Matthew B. O’Rourke ◽  
Fei Liu ◽  
Matthew P. Padula ◽  
...  

The differentiation of human adipose derived stem cells toward a neural phenotype by small molecules has been a vogue topic in the last decade. The characterization of the produced cells has been explored on a broad scale, examining morphological and specific surface protein markers; however, the lack of insight into the expression of functional proteins and their interactive partners is required to further understand the extent of the process. The phenotypic characterization by proteomic profiling allows for a substantial in-depth analysis of the molecular machinery induced and directing the cellular changes through the process. Herein we describe the temporal analysis and quantitative profiling of neural differentiating human adipose-derived stem cells after sub-proteome enrichment using a bisindolylmaleimide chemical probe. The results show that proteins enriched by the Bis-probe were identified reproducibly with 133, 118, 126 and 89 proteins identified at timepoints 0, 1, 6 and 12, respectively. Each temporal timepoint presented several shared and unique proteins relative to neural differentiation and their interactivity. The major protein classes enriched and quantified were enzymes, structural and ribosomal proteins that are integral to differentiation pathways. There were 42 uniquely identified enzymes identified in the cells, many acting as hubs in the networks with several interactions across the network modulating key biological pathways. From the cohort, it was found by gene ontology analysis that 18 enzymes had direct involvement with neurogenic differentiation.

2013 ◽  
Vol 19 (3-4) ◽  
pp. 415-425 ◽  
Author(s):  
Chen Wang ◽  
Fangfang Guo ◽  
Heng Zhou ◽  
Yun Zhang ◽  
Zhigang Xiao ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Premrutai Thitilertdecha ◽  
Visnu Lohsiriwat ◽  
Poonsin Poungpairoj ◽  
Varangkana Tantithavorn ◽  
Nattawat Onlamoon

Variation in numbers and functions of cells in fat tissues may affect therapeutic outcomes and adverse events after autologous fat tissue grafting in postmastectomy breast cancer patients; however, the relevant information regarding cellular components is still incomplete. Phenotypic characterization of heterogeneous cell subsets in stromal vascular fraction (SVF) isolated from fat tissues by flow cytometry was also limited to a combination of few molecules. This study, therefore, developed a polychromatic staining panel for an in-depth characterization of freshly isolated SVF and expanded adipose-derived stem cells (ADSC) from the patients. ADSC were found predominant in SVF (~65% of CD45- cells) with a homogenous phenotype of CD13+CD31-CD34+CD45-CD73+CD90+CD105-CD146- (~94% of total ADSC). Endothelial progenitor cells (EPC) and pericytes were minor (~18% and ~11% of CD45- cells, respectively) with large heterogeneity. Downregulation of CD34 and upregulation of CD105 in ADSC were profound at passage 3, showing a phenotype similar to the classical mesenchymal stem cells from the bone marrow. Results from this study demonstrated that fat tissue collected from patients contains ADSC with a highly homogenous phenotype. The in vitro culture of these cells maintained their homogeneity with modified CD34 and CD105 expression, suggesting the expansion from a single population of ADSC.


Skull Base ◽  
2005 ◽  
Vol 15 (S 2) ◽  
Author(s):  
Stefan Lendeckel ◽  
A. Jödicke ◽  
P. Christophis ◽  
K. Heidinger ◽  
H.-P. Howaldt

Sign in / Sign up

Export Citation Format

Share Document